Connected generalized inverse limits over intervals
Fundamenta Mathematicae, Tome 236 (2017) no. 1, pp. 1-43
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Suppose that for each $i\geq 0$, $I_{i}$ is a closed interval
and $f_{i+1}:I_{i+1}\rightarrow 2^{I_{i}}$ is a surjective upper semicontinuous function with a connected graph.
We give a condition on the graphs called a CC-sequence, and show that $\underleftarrow{\lim}\,(I_i,f_i)$ is disconnected if and only if the system admits a CC-sequence. We also show that $\underleftarrow{\lim}\,(I_i,f_i)$ is disconnected if and only if there is a basic open proper subset of
$\prod_{i\ge 0}I_i$ that contains a component of $\underleftarrow{\lim}\,(I_i,f_i)$.
Keywords:
suppose each geq closed interval rightarrow surjective upper semicontinuous function connected graph condition graphs called cc sequence underleftarrow lim i disconnected only system admits cc sequence underleftarrow lim i disconnected only there basic proper subset prod contains component underleftarrow lim i
Affiliations des auteurs :
Sina Greenwood 1 ; Judy Kennedy 2
@article{10_4064_fm241_4_2016,
author = {Sina Greenwood and Judy Kennedy},
title = {Connected generalized inverse limits over intervals},
journal = {Fundamenta Mathematicae},
pages = {1--43},
publisher = {mathdoc},
volume = {236},
number = {1},
year = {2017},
doi = {10.4064/fm241-4-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm241-4-2016/}
}
TY - JOUR AU - Sina Greenwood AU - Judy Kennedy TI - Connected generalized inverse limits over intervals JO - Fundamenta Mathematicae PY - 2017 SP - 1 EP - 43 VL - 236 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm241-4-2016/ DO - 10.4064/fm241-4-2016 LA - en ID - 10_4064_fm241_4_2016 ER -
Sina Greenwood; Judy Kennedy. Connected generalized inverse limits over intervals. Fundamenta Mathematicae, Tome 236 (2017) no. 1, pp. 1-43. doi: 10.4064/fm241-4-2016
Cité par Sources :