Connected generalized inverse limits over intervals
Fundamenta Mathematicae, Tome 236 (2017) no. 1, pp. 1-43.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Suppose that for each $i\geq 0$, $I_{i}$ is a closed interval and $f_{i+1}:I_{i+1}\rightarrow 2^{I_{i}}$ is a surjective upper semicontinuous function with a connected graph. We give a condition on the graphs called a CC-sequence, and show that $\underleftarrow{\lim}\,(I_i,f_i)$ is disconnected if and only if the system admits a CC-sequence. We also show that $\underleftarrow{\lim}\,(I_i,f_i)$ is disconnected if and only if there is a basic open proper subset of $\prod_{i\ge 0}I_i$ that contains a component of $\underleftarrow{\lim}\,(I_i,f_i)$.
DOI : 10.4064/fm241-4-2016
Keywords: suppose each geq closed interval rightarrow surjective upper semicontinuous function connected graph condition graphs called cc sequence underleftarrow lim i disconnected only system admits cc sequence underleftarrow lim i disconnected only there basic proper subset prod contains component underleftarrow lim i

Sina Greenwood 1 ; Judy Kennedy 2

1 University of Auckland Private Bag 92019 Auckland, New Zealand
2 Department of Mathematics Lamar University P.O. Box 10047 Beaumont, TX 77710, U.S.A.
@article{10_4064_fm241_4_2016,
     author = {Sina Greenwood and Judy Kennedy},
     title = {Connected generalized inverse limits over intervals},
     journal = {Fundamenta Mathematicae},
     pages = {1--43},
     publisher = {mathdoc},
     volume = {236},
     number = {1},
     year = {2017},
     doi = {10.4064/fm241-4-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm241-4-2016/}
}
TY  - JOUR
AU  - Sina Greenwood
AU  - Judy Kennedy
TI  - Connected generalized inverse limits over intervals
JO  - Fundamenta Mathematicae
PY  - 2017
SP  - 1
EP  - 43
VL  - 236
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm241-4-2016/
DO  - 10.4064/fm241-4-2016
LA  - en
ID  - 10_4064_fm241_4_2016
ER  - 
%0 Journal Article
%A Sina Greenwood
%A Judy Kennedy
%T Connected generalized inverse limits over intervals
%J Fundamenta Mathematicae
%D 2017
%P 1-43
%V 236
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm241-4-2016/
%R 10.4064/fm241-4-2016
%G en
%F 10_4064_fm241_4_2016
Sina Greenwood; Judy Kennedy. Connected generalized inverse limits over intervals. Fundamenta Mathematicae, Tome 236 (2017) no. 1, pp. 1-43. doi : 10.4064/fm241-4-2016. http://geodesic.mathdoc.fr/articles/10.4064/fm241-4-2016/

Cité par Sources :