Iterating along a Prikry sequence
Fundamenta Mathematicae, Tome 232 (2016) no. 2, pp. 151-165
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We introduce a new method which combines Prikry forcing with an iteration between the Prikry points. Using our method we prove from large cardinals that it is consistent that the tree property holds at $\aleph _n$ for $n \geq 2$, $\aleph _\omega $ is strong limit and $2^{\aleph _\omega } = \aleph _{\omega +2}$.
Keywords:
introduce method which combines prikry forcing iteration between prikry points using method prove large cardinals consistent tree property holds aleph geq aleph omega strong limit aleph omega aleph omega
Affiliations des auteurs :
Spencer Unger 1
@article{10_4064_fm232_2_4,
author = {Spencer Unger},
title = {Iterating along a {Prikry} sequence},
journal = {Fundamenta Mathematicae},
pages = {151--165},
publisher = {mathdoc},
volume = {232},
number = {2},
year = {2016},
doi = {10.4064/fm232-2-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm232-2-4/}
}
Spencer Unger. Iterating along a Prikry sequence. Fundamenta Mathematicae, Tome 232 (2016) no. 2, pp. 151-165. doi: 10.4064/fm232-2-4
Cité par Sources :