Iterating along a Prikry sequence
Fundamenta Mathematicae, Tome 232 (2016) no. 2, pp. 151-165.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We introduce a new method which combines Prikry forcing with an iteration between the Prikry points. Using our method we prove from large cardinals that it is consistent that the tree property holds at $\aleph _n$ for $n \geq 2$, $\aleph _\omega $ is strong limit and $2^{\aleph _\omega } = \aleph _{\omega +2}$.
DOI : 10.4064/fm232-2-4
Keywords: introduce method which combines prikry forcing iteration between prikry points using method prove large cardinals consistent tree property holds aleph geq aleph omega strong limit aleph omega aleph omega

Spencer Unger 1

1 Department of Mathematics University of California, Los Angeles Los Angeles, CA 90095, U.S.A.
@article{10_4064_fm232_2_4,
     author = {Spencer Unger},
     title = {Iterating along a {Prikry} sequence},
     journal = {Fundamenta Mathematicae},
     pages = {151--165},
     publisher = {mathdoc},
     volume = {232},
     number = {2},
     year = {2016},
     doi = {10.4064/fm232-2-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm232-2-4/}
}
TY  - JOUR
AU  - Spencer Unger
TI  - Iterating along a Prikry sequence
JO  - Fundamenta Mathematicae
PY  - 2016
SP  - 151
EP  - 165
VL  - 232
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm232-2-4/
DO  - 10.4064/fm232-2-4
LA  - en
ID  - 10_4064_fm232_2_4
ER  - 
%0 Journal Article
%A Spencer Unger
%T Iterating along a Prikry sequence
%J Fundamenta Mathematicae
%D 2016
%P 151-165
%V 232
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm232-2-4/
%R 10.4064/fm232-2-4
%G en
%F 10_4064_fm232_2_4
Spencer Unger. Iterating along a Prikry sequence. Fundamenta Mathematicae, Tome 232 (2016) no. 2, pp. 151-165. doi : 10.4064/fm232-2-4. http://geodesic.mathdoc.fr/articles/10.4064/fm232-2-4/

Cité par Sources :