Weak Rudin–Keisler reductions on projective ideals
Fundamenta Mathematicae, Tome 232 (2016) no. 1, pp. 65-78
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We consider a slightly modified form of the standard Rudin–Keisler order on ideals and demonstrate the existence of complete (with respect to this order) ideals in various projective classes. Using our methods, we obtain a simple proof of Hjorth's theorem on the existence of a complete $\mathbf \Pi ^1_1$ equivalence relation. This proof enables us (under PD) to generalize Hjorth's result to the classes of $\boldsymbol {\Pi }^1_{2n+1}$ equivalence relations.
Keywords:
consider slightly modified form standard rudin keisler order ideals demonstrate existence complete respect order ideals various projective classes using methods obtain simple proof hjorths theorem existence complete mathbf equivalence relation proof enables under generalize hjorths result classes boldsymbol equivalence relations
Affiliations des auteurs :
Konstantinos A. Beros 1
@article{10_4064_fm232_1_5,
author = {Konstantinos A. Beros},
title = {Weak {Rudin{\textendash}Keisler} reductions on projective ideals},
journal = {Fundamenta Mathematicae},
pages = {65--78},
publisher = {mathdoc},
volume = {232},
number = {1},
year = {2016},
doi = {10.4064/fm232-1-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm232-1-5/}
}
Konstantinos A. Beros. Weak Rudin–Keisler reductions on projective ideals. Fundamenta Mathematicae, Tome 232 (2016) no. 1, pp. 65-78. doi: 10.4064/fm232-1-5
Cité par Sources :