Jumps of entropy for $C^r$ interval maps
Fundamenta Mathematicae, Tome 231 (2015) no. 3, pp. 299-317
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We study the jumps of topological entropy for $C^r$ interval or circle
maps. We prove in particular that the topological entropy is
continuous at any $f\in C^r([0,1])$ with
$h_{\rm top}(f)>\frac{\log^+\|f'\|_\infty}{r}$. To this end we study the
continuity of the entropy of the Buzzi–Hofbauer diagrams associated to
$C^r$ interval maps.
Keywords:
study jumps topological entropy interval circle maps prove particular topological entropy continuous top frac log infty end study continuity entropy buzzi hofbauer diagrams associated interval maps
Affiliations des auteurs :
David Burguet 1
@article{10_4064_fm231_3_5,
author = {David Burguet},
title = {Jumps of entropy for $C^r$ interval maps},
journal = {Fundamenta Mathematicae},
pages = {299--317},
publisher = {mathdoc},
volume = {231},
number = {3},
year = {2015},
doi = {10.4064/fm231-3-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm231-3-5/}
}
David Burguet. Jumps of entropy for $C^r$ interval maps. Fundamenta Mathematicae, Tome 231 (2015) no. 3, pp. 299-317. doi: 10.4064/fm231-3-5
Cité par Sources :