Jumps of entropy for $C^r$ interval maps
Fundamenta Mathematicae, Tome 231 (2015) no. 3, pp. 299-317.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We study the jumps of topological entropy for $C^r$ interval or circle maps. We prove in particular that the topological entropy is continuous at any $f\in C^r([0,1])$ with $h_{\rm top}(f)>\frac{\log^+\|f'\|_\infty}{r}$. To this end we study the continuity of the entropy of the Buzzi–Hofbauer diagrams associated to $C^r$ interval maps.
DOI : 10.4064/fm231-3-5
Keywords: study jumps topological entropy interval circle maps prove particular topological entropy continuous top frac log infty end study continuity entropy buzzi hofbauer diagrams associated interval maps

David Burguet 1

1 LPMA – CNRS UMR 7599 Université Paris 6 75252 Paris Cedex 05, France
@article{10_4064_fm231_3_5,
     author = {David Burguet},
     title = {Jumps of entropy for $C^r$ interval maps},
     journal = {Fundamenta Mathematicae},
     pages = {299--317},
     publisher = {mathdoc},
     volume = {231},
     number = {3},
     year = {2015},
     doi = {10.4064/fm231-3-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm231-3-5/}
}
TY  - JOUR
AU  - David Burguet
TI  - Jumps of entropy for $C^r$ interval maps
JO  - Fundamenta Mathematicae
PY  - 2015
SP  - 299
EP  - 317
VL  - 231
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm231-3-5/
DO  - 10.4064/fm231-3-5
LA  - en
ID  - 10_4064_fm231_3_5
ER  - 
%0 Journal Article
%A David Burguet
%T Jumps of entropy for $C^r$ interval maps
%J Fundamenta Mathematicae
%D 2015
%P 299-317
%V 231
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm231-3-5/
%R 10.4064/fm231-3-5
%G en
%F 10_4064_fm231_3_5
David Burguet. Jumps of entropy for $C^r$ interval maps. Fundamenta Mathematicae, Tome 231 (2015) no. 3, pp. 299-317. doi : 10.4064/fm231-3-5. http://geodesic.mathdoc.fr/articles/10.4064/fm231-3-5/

Cité par Sources :