Uniformly recurrent sequences and
minimal Cantor omega-limit sets
Fundamenta Mathematicae, Tome 231 (2015) no. 3, pp. 273-284
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We investigate the structure of kneading sequences that belong to unimodal maps for which the omega-limit set of the turning point is a minimal Cantor set. We define a scheme that can be used to generate uniformly recurrent and regularly recurrent infinite sequences over a finite alphabet. It is then shown that if the kneading sequence of a unimodal map can be generated from one of these schemes, then the omega-limit set of the turning point must be a minimal Cantor set.
Keywords:
investigate structure kneading sequences belong unimodal maps which omega limit set turning point minimal cantor set define scheme generate uniformly recurrent regularly recurrent infinite sequences finite alphabet shown kneading sequence unimodal map generated these schemes omega limit set turning point minimal cantor set
Affiliations des auteurs :
Lori Alvin 1
@article{10_4064_fm231_3_3,
author = {Lori Alvin},
title = {Uniformly recurrent sequences and
minimal {Cantor} omega-limit sets},
journal = {Fundamenta Mathematicae},
pages = {273--284},
year = {2015},
volume = {231},
number = {3},
doi = {10.4064/fm231-3-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm231-3-3/}
}
Lori Alvin. Uniformly recurrent sequences and minimal Cantor omega-limit sets. Fundamenta Mathematicae, Tome 231 (2015) no. 3, pp. 273-284. doi: 10.4064/fm231-3-3
Cité par Sources :