Upper and lower estimates for Schauder frames and atomic decompositions
Fundamenta Mathematicae, Tome 231 (2015) no. 2, pp. 161-188.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove that a Schauder frame for any separable Banach space is shrinking if and only if it has an associated space with a shrinking basis, and that a Schauder frame for any separable Banach space is shrinking and boundedly complete if and only if it has a reflexive associated space. To obtain these results, we prove that the upper and lower estimate theorems for finite-dimensional decompositions of Banach spaces can be extended and modified to Schauder frames. We show as well that if a separable infinite-dimensional Banach space has a Schauder frame, then it also has a Schauder frame which is not shrinking.
DOI : 10.4064/fm231-2-4
Keywords: prove schauder frame separable banach space shrinking only has associated space shrinking basis schauder frame separable banach space shrinking boundedly complete only has reflexive associated space obtain these results prove upper lower estimate theorems finite dimensional decompositions banach spaces extended modified schauder frames separable infinite dimensional banach space has schauder frame has schauder frame which shrinking

Kevin Beanland 1 ; Daniel Freeman 2 ; Rui Liu 3

1 Washington and Lee University 204 W. Washington St. Lexington, VA 24450, U.S.A.
2 Department of Mathematics and Computer Science Saint Louis University St. Louis, MO 63103, U.S.A.
3 Department of Mathematics and LPMC Nankai University Tianjin 300071, P.R. China and Department of Mathematics Texas A&M University College Station, TX 77843, U.S.A.
@article{10_4064_fm231_2_4,
     author = {Kevin Beanland and Daniel Freeman and Rui Liu},
     title = {Upper and lower estimates for {Schauder} frames
 and atomic decompositions},
     journal = {Fundamenta Mathematicae},
     pages = {161--188},
     publisher = {mathdoc},
     volume = {231},
     number = {2},
     year = {2015},
     doi = {10.4064/fm231-2-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm231-2-4/}
}
TY  - JOUR
AU  - Kevin Beanland
AU  - Daniel Freeman
AU  - Rui Liu
TI  - Upper and lower estimates for Schauder frames
 and atomic decompositions
JO  - Fundamenta Mathematicae
PY  - 2015
SP  - 161
EP  - 188
VL  - 231
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm231-2-4/
DO  - 10.4064/fm231-2-4
LA  - en
ID  - 10_4064_fm231_2_4
ER  - 
%0 Journal Article
%A Kevin Beanland
%A Daniel Freeman
%A Rui Liu
%T Upper and lower estimates for Schauder frames
 and atomic decompositions
%J Fundamenta Mathematicae
%D 2015
%P 161-188
%V 231
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm231-2-4/
%R 10.4064/fm231-2-4
%G en
%F 10_4064_fm231_2_4
Kevin Beanland; Daniel Freeman; Rui Liu. Upper and lower estimates for Schauder frames
 and atomic decompositions. Fundamenta Mathematicae, Tome 231 (2015) no. 2, pp. 161-188. doi : 10.4064/fm231-2-4. http://geodesic.mathdoc.fr/articles/10.4064/fm231-2-4/

Cité par Sources :