Rosenthal compacta and NIP formulas
Fundamenta Mathematicae, Tome 231 (2015) no. 1, pp. 81-92
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We apply the work of Bourgain, Fremlin and Talagrand on compact subsets of the first Baire class to show new results about $\phi $-types for $\phi $ NIP. In particular, we show that if $M$ is a countable model, then an $M$-invariant $\phi $-type is Borel-definable. Also, the space of $M$-invariant $\phi $-types is a Rosenthal compactum, which implies a number of topological tameness properties.
Mots-clés :
apply work bourgain fremlin talagrand compact subsets first baire class results about phi types phi nip particular countable model m invariant phi type borel definable space m invariant phi types rosenthal compactum which implies number topological tameness properties
Affiliations des auteurs :
Pierre Simon 1
@article{10_4064_fm231_1_5,
author = {Pierre Simon},
title = {Rosenthal compacta and {NIP} formulas},
journal = {Fundamenta Mathematicae},
pages = {81--92},
publisher = {mathdoc},
volume = {231},
number = {1},
year = {2015},
doi = {10.4064/fm231-1-5},
language = {de},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm231-1-5/}
}
Pierre Simon. Rosenthal compacta and NIP formulas. Fundamenta Mathematicae, Tome 231 (2015) no. 1, pp. 81-92. doi: 10.4064/fm231-1-5
Cité par Sources :