Rosenthal compacta and NIP formulas
Fundamenta Mathematicae, Tome 231 (2015) no. 1, pp. 81-92.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We apply the work of Bourgain, Fremlin and Talagrand on compact subsets of the first Baire class to show new results about $\phi $-types for $\phi $ NIP. In particular, we show that if $M$ is a countable model, then an $M$-invariant $\phi $-type is Borel-definable. Also, the space of $M$-invariant $\phi $-types is a Rosenthal compactum, which implies a number of topological tameness properties.
DOI : 10.4064/fm231-1-5
Mots-clés : apply work bourgain fremlin talagrand compact subsets first baire class results about phi types phi nip particular countable model m invariant phi type borel definable space m invariant phi types rosenthal compactum which implies number topological tameness properties

Pierre Simon 1

1 CNRS, Université Lyon 1 Institut Camille Jordan 43 boulevard du 11 novembre 1918 69622 Villeurbanne, France
@article{10_4064_fm231_1_5,
     author = {Pierre Simon},
     title = {Rosenthal compacta and {NIP} formulas},
     journal = {Fundamenta Mathematicae},
     pages = {81--92},
     publisher = {mathdoc},
     volume = {231},
     number = {1},
     year = {2015},
     doi = {10.4064/fm231-1-5},
     language = {de},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm231-1-5/}
}
TY  - JOUR
AU  - Pierre Simon
TI  - Rosenthal compacta and NIP formulas
JO  - Fundamenta Mathematicae
PY  - 2015
SP  - 81
EP  - 92
VL  - 231
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm231-1-5/
DO  - 10.4064/fm231-1-5
LA  - de
ID  - 10_4064_fm231_1_5
ER  - 
%0 Journal Article
%A Pierre Simon
%T Rosenthal compacta and NIP formulas
%J Fundamenta Mathematicae
%D 2015
%P 81-92
%V 231
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm231-1-5/
%R 10.4064/fm231-1-5
%G de
%F 10_4064_fm231_1_5
Pierre Simon. Rosenthal compacta and NIP formulas. Fundamenta Mathematicae, Tome 231 (2015) no. 1, pp. 81-92. doi : 10.4064/fm231-1-5. http://geodesic.mathdoc.fr/articles/10.4064/fm231-1-5/

Cité par Sources :