On the AJ conjecture for cables of twist knots
Fundamenta Mathematicae, Tome 230 (2015) no. 3, pp. 291-307
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We study the AJ conjecture that relates the A-polynomial and the colored Jones polynomial of a knot in $S^3$. We confirm the AJ conjecture for $(r,2)$-cables of the $m$-twist knot, for all odd integers $r$ satisfying $$\begin{cases} (r+8)(r-8m)>0 \mbox{if } m> 0, \\
r(r+8m-4)>0 \mbox{if } m0. \end{cases} $$
Keywords:
study conjecture relates a polynomial colored jones polynomial knot confirm conjecture cables m twist knot odd integers satisfying begin cases r mbox m mbox end cases
Affiliations des auteurs :
Anh T. Tran 1
@article{10_4064_fm230_3_5,
author = {Anh T. Tran},
title = {On the {AJ} conjecture for cables of twist knots},
journal = {Fundamenta Mathematicae},
pages = {291--307},
year = {2015},
volume = {230},
number = {3},
doi = {10.4064/fm230-3-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm230-3-5/}
}
Anh T. Tran. On the AJ conjecture for cables of twist knots. Fundamenta Mathematicae, Tome 230 (2015) no. 3, pp. 291-307. doi: 10.4064/fm230-3-5
Cité par Sources :