Template iterations and maximal cofinitary groups
Fundamenta Mathematicae, Tome 230 (2015) no. 3, pp. 205-236.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Jörg Brendle (2003) used Hechler's forcing notion for adding a maximal almost disjoint family along an appropriate template forcing construction to show that $\mathfrak a$ (the minimal size of a maximal almost disjoint family) can be of countable cofinality. The main result of the present paper is that $\mathfrak a_g$, the minimal size of a maximal cofinitary group, can be of countable cofinality. To prove this we define a natural poset for adding a maximal cofinitary group of a given cardinality, which enjoys certain combinatorial properties allowing it to be used within a similar template forcing construction. Additionally we find that $\mathfrak a_p$, the minimal size of a maximal family of almost disjoint permutations, and $\mathfrak a_e$, the minimal size of a maximal eventually different family, can be of countable cofinality.
DOI : 10.4064/fm230-3-1
Keywords: brendle hechlers forcing notion adding maximal almost disjoint family along appropriate template forcing construction mathfrak minimal size maximal almost disjoint family countable cofinality main result present paper mathfrak minimal size maximal cofinitary group countable cofinality prove define natural poset adding maximal cofinitary group given cardinality which enjoys certain combinatorial properties allowing within similar template forcing construction additionally mathfrak minimal size maximal family almost disjoint permutations mathfrak minimal size maximal eventually different family countable cofinality

Vera Fischer 1 ; Asger Törnquist 2

1 Institute of Discrete Mathematics and Geometry Technical University of Vienna Wiedner Hauptstrasse 8–10 1040 Wien, Austria
2 Department of Mathematical Sciences University of Copenhagen Universitetspark 5 2100 København, Denmark
@article{10_4064_fm230_3_1,
     author = {Vera Fischer and Asger T\"ornquist},
     title = {Template iterations and maximal cofinitary groups},
     journal = {Fundamenta Mathematicae},
     pages = {205--236},
     publisher = {mathdoc},
     volume = {230},
     number = {3},
     year = {2015},
     doi = {10.4064/fm230-3-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm230-3-1/}
}
TY  - JOUR
AU  - Vera Fischer
AU  - Asger Törnquist
TI  - Template iterations and maximal cofinitary groups
JO  - Fundamenta Mathematicae
PY  - 2015
SP  - 205
EP  - 236
VL  - 230
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm230-3-1/
DO  - 10.4064/fm230-3-1
LA  - en
ID  - 10_4064_fm230_3_1
ER  - 
%0 Journal Article
%A Vera Fischer
%A Asger Törnquist
%T Template iterations and maximal cofinitary groups
%J Fundamenta Mathematicae
%D 2015
%P 205-236
%V 230
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm230-3-1/
%R 10.4064/fm230-3-1
%G en
%F 10_4064_fm230_3_1
Vera Fischer; Asger Törnquist. Template iterations and maximal cofinitary groups. Fundamenta Mathematicae, Tome 230 (2015) no. 3, pp. 205-236. doi : 10.4064/fm230-3-1. http://geodesic.mathdoc.fr/articles/10.4064/fm230-3-1/

Cité par Sources :