Equivariant measurable liftings
Fundamenta Mathematicae, Tome 230 (2015) no. 2, pp. 149-165.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We discuss equivariance for linear liftings of measurable functions. Existence is established when a transformation group acts amenably, as e.g. the Möbius group of the projective line. Since the general proof is very simple but not explicit, we also provide a much more explicit lifting for semisimple Lie groups acting on their Furstenberg boundary, using unrestricted Fatou convergence. This setting is relevant to $L^\infty $-cocycles for characteristic classes.
DOI : 10.4064/fm230-2-2
Keywords: discuss equivariance linear liftings measurable functions existence established transformation group acts amenably bius group projective line since general proof simple explicit provide much explicit lifting semisimple lie groups acting their furstenberg boundary using unrestricted fatou convergence setting relevant infty cocycles characteristic classes

Nicolas Monod 1

1 EPFL 1015 Lausanne, Switzerland
@article{10_4064_fm230_2_2,
     author = {Nicolas Monod},
     title = {Equivariant measurable liftings},
     journal = {Fundamenta Mathematicae},
     pages = {149--165},
     publisher = {mathdoc},
     volume = {230},
     number = {2},
     year = {2015},
     doi = {10.4064/fm230-2-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm230-2-2/}
}
TY  - JOUR
AU  - Nicolas Monod
TI  - Equivariant measurable liftings
JO  - Fundamenta Mathematicae
PY  - 2015
SP  - 149
EP  - 165
VL  - 230
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm230-2-2/
DO  - 10.4064/fm230-2-2
LA  - en
ID  - 10_4064_fm230_2_2
ER  - 
%0 Journal Article
%A Nicolas Monod
%T Equivariant measurable liftings
%J Fundamenta Mathematicae
%D 2015
%P 149-165
%V 230
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm230-2-2/
%R 10.4064/fm230-2-2
%G en
%F 10_4064_fm230_2_2
Nicolas Monod. Equivariant measurable liftings. Fundamenta Mathematicae, Tome 230 (2015) no. 2, pp. 149-165. doi : 10.4064/fm230-2-2. http://geodesic.mathdoc.fr/articles/10.4064/fm230-2-2/

Cité par Sources :