Some model theory of ${\rm SL}(2,{\mathbb R})$
Fundamenta Mathematicae, Tome 229 (2015) no. 2, pp. 117-128.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We study the action of $G = {\rm SL} (2,\mathbb R)$, viewed as a group definable in the structure $M = (\mathbb R,+,\times )$, on its type space $S_{G}(M)$. We identify a minimal closed $G$-flow $I$ and an idempotent $r\in I$ (with respect to the Ellis semigroup structure $*$ on $S_{G}(M)$). We also show that the “Ellis group” $(r*I,*)$ is nontrivial, in fact it is the group with two elements, yielding a negative answer to a question of Newelski.
DOI : 10.4064/fm229-2-2
Keywords: study action mathbb viewed group definable structure mathbb times its type space identify minimal closed g flow idempotent respect ellis semigroup structure * ellis group r*i * nontrivial group elements yielding negative answer question newelski

Jakub Gismatullin 1 ; Davide Penazzi 2 ; Anand Pillay 3

1 Instytut Matematyczny Uniwersytet Wrocławski Pl. Grunwaldzki 2/4 50-384 Wrocław, Poland
2 School of CEPS University of Central Lancashire Preston, PR1 2HE, UK
3 Department of Mathematics University of Notre Dame Notre Dame, IN 46556, U.S.A.
@article{10_4064_fm229_2_2,
     author = {Jakub Gismatullin and Davide Penazzi and Anand Pillay},
     title = {Some model theory of ${\rm SL}(2,{\mathbb R})$},
     journal = {Fundamenta Mathematicae},
     pages = {117--128},
     publisher = {mathdoc},
     volume = {229},
     number = {2},
     year = {2015},
     doi = {10.4064/fm229-2-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm229-2-2/}
}
TY  - JOUR
AU  - Jakub Gismatullin
AU  - Davide Penazzi
AU  - Anand Pillay
TI  - Some model theory of ${\rm SL}(2,{\mathbb R})$
JO  - Fundamenta Mathematicae
PY  - 2015
SP  - 117
EP  - 128
VL  - 229
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm229-2-2/
DO  - 10.4064/fm229-2-2
LA  - en
ID  - 10_4064_fm229_2_2
ER  - 
%0 Journal Article
%A Jakub Gismatullin
%A Davide Penazzi
%A Anand Pillay
%T Some model theory of ${\rm SL}(2,{\mathbb R})$
%J Fundamenta Mathematicae
%D 2015
%P 117-128
%V 229
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm229-2-2/
%R 10.4064/fm229-2-2
%G en
%F 10_4064_fm229_2_2
Jakub Gismatullin; Davide Penazzi; Anand Pillay. Some model theory of ${\rm SL}(2,{\mathbb R})$. Fundamenta Mathematicae, Tome 229 (2015) no. 2, pp. 117-128. doi : 10.4064/fm229-2-2. http://geodesic.mathdoc.fr/articles/10.4064/fm229-2-2/

Cité par Sources :