The tree property at both $\aleph _{\omega +1}$ and $\aleph _{\omega +2}$
Fundamenta Mathematicae, Tome 229 (2015) no. 1, pp. 83-100
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We force from large cardinals a model of ${\rm ZFC }$ in which $\aleph _{\omega +1}$ and $\aleph _{\omega +2}$ both have the tree property. We also prove that if we strengthen the large cardinal assumptions, then in the final model $\aleph _{\omega +2}$ even satisfies the super tree property.
Keywords:
force large cardinals model zfc which aleph omega aleph omega have tree property prove strengthen large cardinal assumptions final model aleph omega even satisfies super tree property
Affiliations des auteurs :
Laura Fontanella 1 ; Sy David Friedman 1
@article{10_4064_fm229_1_3,
author = {Laura Fontanella and Sy David Friedman},
title = {The tree property at both $\aleph _{\omega +1}$ and $\aleph _{\omega +2}$},
journal = {Fundamenta Mathematicae},
pages = {83--100},
year = {2015},
volume = {229},
number = {1},
doi = {10.4064/fm229-1-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm229-1-3/}
}
TY - JOUR
AU - Laura Fontanella
AU - Sy David Friedman
TI - The tree property at both $\aleph _{\omega +1}$ and $\aleph _{\omega +2}$
JO - Fundamenta Mathematicae
PY - 2015
SP - 83
EP - 100
VL - 229
IS - 1
UR - http://geodesic.mathdoc.fr/articles/10.4064/fm229-1-3/
DO - 10.4064/fm229-1-3
LA - en
ID - 10_4064_fm229_1_3
ER -
Laura Fontanella; Sy David Friedman. The tree property at both $\aleph _{\omega +1}$ and $\aleph _{\omega +2}$. Fundamenta Mathematicae, Tome 229 (2015) no. 1, pp. 83-100. doi: 10.4064/fm229-1-3
Cité par Sources :