$\mathbf P$-NDOP and $\mathbf P$-decompositions of $\aleph _{\epsilon} $-saturated models of superstable theories
Fundamenta Mathematicae, Tome 229 (2015) no. 1, pp. 47-81.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Given a complete, superstable theory, we distinguish a class ${\mathbf P}$ of regular types, typically closed under automorphisms of ${\mathfrak C}$ and non-orthogonality. We define the notion of ${\mathbf P}$-NDOP, which is a weakening of NDOP. For superstable theories with ${\mathbf P}$-NDOP, we prove the existence of ${\mathbf P}$-decompositions and derive an analog of the first author's result in Israel J. Math. 140 (2004). In this context, we also find a sufficient condition on ${\mathbf P}$-decompositions that implies non-isomorphic models. For this, we investigate natural structures on the types in ${\mathbf P}\cap S(M)$ modulo non-orthogonality.
DOI : 10.4064/fm229-1-2
Keywords: given complete superstable theory distinguish class mathbf regular types typically closed under automorphisms mathfrak non orthogonality define notion mathbf ndop which weakening ndop superstable theories mathbf ndop prove existence mathbf decompositions derive analog first authors result israel nbsp math context sufficient condition mathbf decompositions implies non isomorphic models investigate natural structures types mathbf cap modulo non orthogonality

Saharon Shelah 1 ; Michael C. Laskowski 2

1 Einstein Institute of Mathematics The Hebrew University of Jerusalem Edmond J. Safra Campus, Givat Ram Jerusalem, 91904, Israel and Department of Mathematics Hill Center, Busch Campus Rutgers, the State University of New Jersey 110 Frelinghuysen Road Piscataway, NJ 08854-9019, U.S.A.
2 Department of Mathematics University of Maryland College Park, MD 20742, U.S.A.
@article{10_4064_fm229_1_2,
     author = {Saharon Shelah and Michael C. Laskowski},
     title = {$\mathbf P${-NDOP} and $\mathbf P$-decompositions of
 $\aleph _{\epsilon} $-saturated models of superstable theories},
     journal = {Fundamenta Mathematicae},
     pages = {47--81},
     publisher = {mathdoc},
     volume = {229},
     number = {1},
     year = {2015},
     doi = {10.4064/fm229-1-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm229-1-2/}
}
TY  - JOUR
AU  - Saharon Shelah
AU  - Michael C. Laskowski
TI  - $\mathbf P$-NDOP and $\mathbf P$-decompositions of
 $\aleph _{\epsilon} $-saturated models of superstable theories
JO  - Fundamenta Mathematicae
PY  - 2015
SP  - 47
EP  - 81
VL  - 229
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm229-1-2/
DO  - 10.4064/fm229-1-2
LA  - en
ID  - 10_4064_fm229_1_2
ER  - 
%0 Journal Article
%A Saharon Shelah
%A Michael C. Laskowski
%T $\mathbf P$-NDOP and $\mathbf P$-decompositions of
 $\aleph _{\epsilon} $-saturated models of superstable theories
%J Fundamenta Mathematicae
%D 2015
%P 47-81
%V 229
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm229-1-2/
%R 10.4064/fm229-1-2
%G en
%F 10_4064_fm229_1_2
Saharon Shelah; Michael C. Laskowski. $\mathbf P$-NDOP and $\mathbf P$-decompositions of
 $\aleph _{\epsilon} $-saturated models of superstable theories. Fundamenta Mathematicae, Tome 229 (2015) no. 1, pp. 47-81. doi : 10.4064/fm229-1-2. http://geodesic.mathdoc.fr/articles/10.4064/fm229-1-2/

Cité par Sources :