Borel completeness of some $\aleph _{0}$-stable theories
Fundamenta Mathematicae, Tome 229 (2015) no. 1, pp. 1-46
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We study $\aleph _0$-stable theories, and prove that if $T$ either has eni-DOP or is eni-deep, then its class of countable models is Borel complete. We introduce the notion of $\lambda $-Borel completeness and prove that such theories are $\lambda $-Borel complete. Using this, we conclude that an $\aleph _0$-stable theory satisfies $I_{\infty ,\aleph _0}(T,\lambda )=2^\lambda $ for all cardinals $\lambda $ if and only if $T$ either has eni-DOP or is eni-deep.
Keywords:
study aleph stable theories prove either has eni dop eni deep its class countable models borel complete introduce notion lambda borel completeness prove theories lambda borel complete using conclude aleph stable theory satisfies infty aleph lambda lambda cardinals lambda only either has eni dop eni deep
Affiliations des auteurs :
Michael C. Laskowski 1 ; Saharon Shelah 2
@article{10_4064_fm229_1_1,
author = {Michael C. Laskowski and Saharon Shelah},
title = {Borel completeness of some $\aleph _{0}$-stable theories},
journal = {Fundamenta Mathematicae},
pages = {1--46},
publisher = {mathdoc},
volume = {229},
number = {1},
year = {2015},
doi = {10.4064/fm229-1-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm229-1-1/}
}
TY - JOUR
AU - Michael C. Laskowski
AU - Saharon Shelah
TI - Borel completeness of some $\aleph _{0}$-stable theories
JO - Fundamenta Mathematicae
PY - 2015
SP - 1
EP - 46
VL - 229
IS - 1
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.4064/fm229-1-1/
DO - 10.4064/fm229-1-1
LA - en
ID - 10_4064_fm229_1_1
ER -
Michael C. Laskowski; Saharon Shelah. Borel completeness of some $\aleph _{0}$-stable theories. Fundamenta Mathematicae, Tome 229 (2015) no. 1, pp. 1-46. doi: 10.4064/fm229-1-1
Cité par Sources :