Non-abelian group structure on the Urysohn universal space
Fundamenta Mathematicae, Tome 228 (2015) no. 3, pp. 251-263.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove that there exists a non-abelian group structure on the Urysohn universal metric space. More precisely, we introduce a variant of the Graev metric that enables us to construct a free group with countably many generators equipped with a two-sided invariant metric that is isometric to the rational Urysohn space. We list several related open problems.
DOI : 10.4064/fm228-3-3
Keywords: prove there exists non abelian group structure urysohn universal metric space precisely introduce variant graev metric enables construct group countably many generators equipped two sided invariant metric isometric rational urysohn space list several related problems

Michal Doucha 1

1 Institute of Mathematics Polish Academy of Sciences Śniadeckich 8 00-656 Warszawa, Poland
@article{10_4064_fm228_3_3,
     author = {Michal Doucha},
     title = {Non-abelian group structure on the {Urysohn} universal space},
     journal = {Fundamenta Mathematicae},
     pages = {251--263},
     publisher = {mathdoc},
     volume = {228},
     number = {3},
     year = {2015},
     doi = {10.4064/fm228-3-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm228-3-3/}
}
TY  - JOUR
AU  - Michal Doucha
TI  - Non-abelian group structure on the Urysohn universal space
JO  - Fundamenta Mathematicae
PY  - 2015
SP  - 251
EP  - 263
VL  - 228
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm228-3-3/
DO  - 10.4064/fm228-3-3
LA  - en
ID  - 10_4064_fm228_3_3
ER  - 
%0 Journal Article
%A Michal Doucha
%T Non-abelian group structure on the Urysohn universal space
%J Fundamenta Mathematicae
%D 2015
%P 251-263
%V 228
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm228-3-3/
%R 10.4064/fm228-3-3
%G en
%F 10_4064_fm228_3_3
Michal Doucha. Non-abelian group structure on the Urysohn universal space. Fundamenta Mathematicae, Tome 228 (2015) no. 3, pp. 251-263. doi : 10.4064/fm228-3-3. http://geodesic.mathdoc.fr/articles/10.4064/fm228-3-3/

Cité par Sources :