Non-abelian group structure on the Urysohn universal space
Fundamenta Mathematicae, Tome 228 (2015) no. 3, pp. 251-263
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove that there exists a non-abelian group structure on the Urysohn universal metric space. More precisely, we introduce a variant of the Graev metric that enables us to construct a free group with countably many generators equipped with a two-sided invariant metric that is isometric to the rational Urysohn space. We list several related open problems.
Keywords:
prove there exists non abelian group structure urysohn universal metric space precisely introduce variant graev metric enables construct group countably many generators equipped two sided invariant metric isometric rational urysohn space list several related problems
Affiliations des auteurs :
Michal Doucha 1
@article{10_4064_fm228_3_3,
author = {Michal Doucha},
title = {Non-abelian group structure on the {Urysohn} universal space},
journal = {Fundamenta Mathematicae},
pages = {251--263},
publisher = {mathdoc},
volume = {228},
number = {3},
year = {2015},
doi = {10.4064/fm228-3-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm228-3-3/}
}
Michal Doucha. Non-abelian group structure on the Urysohn universal space. Fundamenta Mathematicae, Tome 228 (2015) no. 3, pp. 251-263. doi: 10.4064/fm228-3-3
Cité par Sources :