Estimation of the Szlenk index of reflexive Banach spaces using generalized Baernstein spaces
Fundamenta Mathematicae, Tome 228 (2015) no. 2, pp. 153-171
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
For each ordinal $\alpha \omega _1$, we prove the existence of a separable, reflexive Banach space $W$ with a basis so that $ {\rm Sz}(W), {\rm Sz}(W^*)\leq \omega ^{\alpha +1}$ which is universal for the class of separable, reflexive Banach spaces $X$ satisfying ${\rm Sz}(X), {\rm Sz}(X^*)\leq \omega ^\alpha $.
Keywords:
each ordinal alpha omega prove existence separable reflexive banach space basis * leq omega alpha which universal class separable reflexive banach spaces satisfying * leq omega alpha
Affiliations des auteurs :
Ryan Causey 1
@article{10_4064_fm228_2_3,
author = {Ryan Causey},
title = {Estimation of the {Szlenk} index of reflexive {Banach} spaces using generalized {Baernstein} spaces},
journal = {Fundamenta Mathematicae},
pages = {153--171},
year = {2015},
volume = {228},
number = {2},
doi = {10.4064/fm228-2-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm228-2-3/}
}
TY - JOUR AU - Ryan Causey TI - Estimation of the Szlenk index of reflexive Banach spaces using generalized Baernstein spaces JO - Fundamenta Mathematicae PY - 2015 SP - 153 EP - 171 VL - 228 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/fm228-2-3/ DO - 10.4064/fm228-2-3 LA - en ID - 10_4064_fm228_2_3 ER -
Ryan Causey. Estimation of the Szlenk index of reflexive Banach spaces using generalized Baernstein spaces. Fundamenta Mathematicae, Tome 228 (2015) no. 2, pp. 153-171. doi: 10.4064/fm228-2-3
Cité par Sources :