Estimation of the Szlenk index of reflexive Banach spaces using generalized Baernstein spaces
Fundamenta Mathematicae, Tome 228 (2015) no. 2, pp. 153-171.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For each ordinal $\alpha \omega _1$, we prove the existence of a separable, reflexive Banach space $W$ with a basis so that $ {\rm Sz}(W), {\rm Sz}(W^*)\leq \omega ^{\alpha +1}$ which is universal for the class of separable, reflexive Banach spaces $X$ satisfying ${\rm Sz}(X), {\rm Sz}(X^*)\leq \omega ^\alpha $.
DOI : 10.4064/fm228-2-3
Keywords: each ordinal alpha omega prove existence separable reflexive banach space basis * leq omega alpha which universal class separable reflexive banach spaces satisfying * leq omega alpha

Ryan Causey 1

1 Department of Mathematics Texas A&M University College Station, TX 77845, U.S.A.
@article{10_4064_fm228_2_3,
     author = {Ryan Causey},
     title = {Estimation of the {Szlenk} index of reflexive {Banach} spaces using generalized {Baernstein} spaces},
     journal = {Fundamenta Mathematicae},
     pages = {153--171},
     publisher = {mathdoc},
     volume = {228},
     number = {2},
     year = {2015},
     doi = {10.4064/fm228-2-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm228-2-3/}
}
TY  - JOUR
AU  - Ryan Causey
TI  - Estimation of the Szlenk index of reflexive Banach spaces using generalized Baernstein spaces
JO  - Fundamenta Mathematicae
PY  - 2015
SP  - 153
EP  - 171
VL  - 228
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm228-2-3/
DO  - 10.4064/fm228-2-3
LA  - en
ID  - 10_4064_fm228_2_3
ER  - 
%0 Journal Article
%A Ryan Causey
%T Estimation of the Szlenk index of reflexive Banach spaces using generalized Baernstein spaces
%J Fundamenta Mathematicae
%D 2015
%P 153-171
%V 228
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm228-2-3/
%R 10.4064/fm228-2-3
%G en
%F 10_4064_fm228_2_3
Ryan Causey. Estimation of the Szlenk index of reflexive Banach spaces using generalized Baernstein spaces. Fundamenta Mathematicae, Tome 228 (2015) no. 2, pp. 153-171. doi : 10.4064/fm228-2-3. http://geodesic.mathdoc.fr/articles/10.4064/fm228-2-3/

Cité par Sources :