Wijsman hyperspaces of non-separable metric spaces
Fundamenta Mathematicae, Tome 228 (2015) no. 1, pp. 63-79.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Given a metric space $\langle X,\rho\rangle$, consider its hyperspace of closed sets ${\rm CL}(X)$ with the Wijsman topology $\tau_{W(\rho)}$. It is known that $\langle{{\rm CL}(X),\tau_{W(\rho)}}\rangle$ is metrizable if and only if $X$ is separable, and it is an open question by Di Maio and Meccariello whether this is equivalent to $\langle{{\rm CL}(X), \tau_{W(\rho)}}\rangle$ being normal. We prove that if the weight of $X$ is a regular uncountable cardinal and $X$ is locally separable, then $\langle{{\rm CL}(X),\tau_{W(\rho)}}\rangle$ is not normal. We also solve some questions by Cao, Junnila and Moors regarding isolated points in Wijsman hyperspaces.
DOI : 10.4064/fm228-1-5
Keywords: given metric space langle rho rangle consider its hyperspace closed sets wijsman topology tau rho known langle tau rho rangle metrizable only separable question maio meccariello whether equivalent langle tau rho rangle being normal prove weight regular uncountable cardinal locally separable langle tau rho rangle normal solve questions cao junnila moors regarding isolated points wijsman hyperspaces

Rodrigo Hernández-Gutiérrez 1 ; Paul J. Szeptycki 1

1 Department of Mathematics and Statistics York University Toronto, ON M3J 1P3, Canada
@article{10_4064_fm228_1_5,
     author = {Rodrigo Hern\'andez-Guti\'errez and Paul J. Szeptycki},
     title = {Wijsman hyperspaces of non-separable metric spaces},
     journal = {Fundamenta Mathematicae},
     pages = {63--79},
     publisher = {mathdoc},
     volume = {228},
     number = {1},
     year = {2015},
     doi = {10.4064/fm228-1-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm228-1-5/}
}
TY  - JOUR
AU  - Rodrigo Hernández-Gutiérrez
AU  - Paul J. Szeptycki
TI  - Wijsman hyperspaces of non-separable metric spaces
JO  - Fundamenta Mathematicae
PY  - 2015
SP  - 63
EP  - 79
VL  - 228
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm228-1-5/
DO  - 10.4064/fm228-1-5
LA  - en
ID  - 10_4064_fm228_1_5
ER  - 
%0 Journal Article
%A Rodrigo Hernández-Gutiérrez
%A Paul J. Szeptycki
%T Wijsman hyperspaces of non-separable metric spaces
%J Fundamenta Mathematicae
%D 2015
%P 63-79
%V 228
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm228-1-5/
%R 10.4064/fm228-1-5
%G en
%F 10_4064_fm228_1_5
Rodrigo Hernández-Gutiérrez; Paul J. Szeptycki. Wijsman hyperspaces of non-separable metric spaces. Fundamenta Mathematicae, Tome 228 (2015) no. 1, pp. 63-79. doi : 10.4064/fm228-1-5. http://geodesic.mathdoc.fr/articles/10.4064/fm228-1-5/

Cité par Sources :