Selivanovski hard sets are hard
Fundamenta Mathematicae, Tome 228 (2015) no. 1, pp. 17-25
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $H\subseteq Z\subseteq 2^{\omega }$. For $n\ge 2$, we prove that if Selivanovski measurable functions from $2^{\omega }$ to $Z$ give as preimages of $H$ all $\boldsymbol {\Sigma }_{n}^{1}$ subsets of $2^{\omega }$, then so do continuous injections.
Keywords:
subseteq subseteq omega prove selivanovski measurable functions omega preimages boldsymbol sigma subsets omega continuous injections
Affiliations des auteurs :
Janusz Pawlikowski 1
@article{10_4064_fm228_1_2,
author = {Janusz Pawlikowski},
title = {Selivanovski hard sets are hard},
journal = {Fundamenta Mathematicae},
pages = {17--25},
publisher = {mathdoc},
volume = {228},
number = {1},
year = {2015},
doi = {10.4064/fm228-1-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm228-1-2/}
}
Janusz Pawlikowski. Selivanovski hard sets are hard. Fundamenta Mathematicae, Tome 228 (2015) no. 1, pp. 17-25. doi: 10.4064/fm228-1-2
Cité par Sources :