Selivanovski hard sets are hard
Fundamenta Mathematicae, Tome 228 (2015) no. 1, pp. 17-25.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $H\subseteq Z\subseteq 2^{\omega }$. For $n\ge 2$, we prove that if Selivanovski measurable functions from $2^{\omega }$ to $Z$ give as preimages of $H$ all $\boldsymbol {\Sigma }_{n}^{1}$ subsets of $2^{\omega }$, then so do continuous injections.
DOI : 10.4064/fm228-1-2
Keywords: subseteq subseteq omega prove selivanovski measurable functions omega preimages boldsymbol sigma subsets omega continuous injections

Janusz Pawlikowski 1

1 Department of Mathematics University of Wrocław Pl. Grunwaldzki 2/4 50-384 Wrocław, Poland
@article{10_4064_fm228_1_2,
     author = {Janusz Pawlikowski},
     title = {Selivanovski hard sets are hard},
     journal = {Fundamenta Mathematicae},
     pages = {17--25},
     publisher = {mathdoc},
     volume = {228},
     number = {1},
     year = {2015},
     doi = {10.4064/fm228-1-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm228-1-2/}
}
TY  - JOUR
AU  - Janusz Pawlikowski
TI  - Selivanovski hard sets are hard
JO  - Fundamenta Mathematicae
PY  - 2015
SP  - 17
EP  - 25
VL  - 228
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm228-1-2/
DO  - 10.4064/fm228-1-2
LA  - en
ID  - 10_4064_fm228_1_2
ER  - 
%0 Journal Article
%A Janusz Pawlikowski
%T Selivanovski hard sets are hard
%J Fundamenta Mathematicae
%D 2015
%P 17-25
%V 228
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm228-1-2/
%R 10.4064/fm228-1-2
%G en
%F 10_4064_fm228_1_2
Janusz Pawlikowski. Selivanovski hard sets are hard. Fundamenta Mathematicae, Tome 228 (2015) no. 1, pp. 17-25. doi : 10.4064/fm228-1-2. http://geodesic.mathdoc.fr/articles/10.4064/fm228-1-2/

Cité par Sources :