Some pinching deformations of the Fatou function
Fundamenta Mathematicae, Tome 228 (2015) no. 1, pp. 1-15
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We are interested in deformations of Baker domains by a pinching process in curves. In this paper we deform the Fatou function $F(z)=z+1+e^{-z}$, depending on the curves selected, to any map of the form $F_{p/q} (z)=z+e^{-z}+2{\pi }ip/q$, $p/q$ a rational number. This process deforms a function with a doubly parabolic Baker domain into a function with an infinite number of doubly parabolic periodic Baker domains if $p=0$, otherwise to a function with wandering domains. Finally, we show that certain attracting domains can be deformed by a pinching process into doubly parabolic Baker domains.
Keywords:
interested deformations baker domains pinching process curves paper deform fatou function z depending curves selected map form z rational number process deforms function doubly parabolic baker domain function infinite number doubly parabolic periodic baker domains otherwise function wandering domains finally certain attracting domains deformed pinching process doubly parabolic baker domains
Affiliations des auteurs :
Patricia Domínguez 1 ; Guillermo Sienra 2
@article{10_4064_fm228_1_1,
author = {Patricia Dom{\'\i}nguez and Guillermo Sienra},
title = {Some pinching deformations of the {Fatou} function},
journal = {Fundamenta Mathematicae},
pages = {1--15},
publisher = {mathdoc},
volume = {228},
number = {1},
year = {2015},
doi = {10.4064/fm228-1-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm228-1-1/}
}
TY - JOUR AU - Patricia Domínguez AU - Guillermo Sienra TI - Some pinching deformations of the Fatou function JO - Fundamenta Mathematicae PY - 2015 SP - 1 EP - 15 VL - 228 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm228-1-1/ DO - 10.4064/fm228-1-1 LA - en ID - 10_4064_fm228_1_1 ER -
Patricia Domínguez; Guillermo Sienra. Some pinching deformations of the Fatou function. Fundamenta Mathematicae, Tome 228 (2015) no. 1, pp. 1-15. doi: 10.4064/fm228-1-1
Cité par Sources :