Shrinking of toroidal decomposition spaces
Fundamenta Mathematicae, Tome 227 (2014) no. 3, pp. 271-296.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Given a sequence of oriented links $L^1,L^2,L^3,\dots $ each of which has a distinguished, unknotted component, there is a decomposition space $\mathcal {D}$ of $S^3$ naturally associated to it, which is constructed as the components of the intersection of an infinite sequence of nested solid tori. The Bing and Whitehead continua are simple, well known examples. We give a necessary and sufficient criterion to determine whether $\mathcal {D}$ is shrinkable, generalising previous work of F. Ancel and M. Starbird and others. This criterion can effectively determine, in many cases, whether the quotient map $S^3 \to S^3 / \mathcal {D}$ can be approximated by homeomorphisms.
DOI : 10.4064/fm227-3-3
Keywords: given sequence oriented links dots each which has distinguished unknotted component there decomposition space mathcal naturally associated which constructed components intersection infinite sequence nested solid tori bing whitehead continua simple known examples necessary sufficient criterion determine whether mathcal shrinkable generalising previous work ancel starbird others criterion effectively determine many cases whether quotient map mathcal approximated homeomorphisms

Daniel Kasprowski 1 ; Mark Powell 2

1 Westfälische Universität Münster Einsteinstrasse 62 48149 Münster, Germany
2 Department of Mathematics Indiana University Bloomington, IN 47405, U.S.A. and Max Planck Institute for Mathematics Vivatsgasse 7 53111 Bonn, Germany
@article{10_4064_fm227_3_3,
     author = {Daniel Kasprowski and Mark Powell},
     title = {Shrinking of toroidal decomposition spaces},
     journal = {Fundamenta Mathematicae},
     pages = {271--296},
     publisher = {mathdoc},
     volume = {227},
     number = {3},
     year = {2014},
     doi = {10.4064/fm227-3-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm227-3-3/}
}
TY  - JOUR
AU  - Daniel Kasprowski
AU  - Mark Powell
TI  - Shrinking of toroidal decomposition spaces
JO  - Fundamenta Mathematicae
PY  - 2014
SP  - 271
EP  - 296
VL  - 227
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm227-3-3/
DO  - 10.4064/fm227-3-3
LA  - en
ID  - 10_4064_fm227_3_3
ER  - 
%0 Journal Article
%A Daniel Kasprowski
%A Mark Powell
%T Shrinking of toroidal decomposition spaces
%J Fundamenta Mathematicae
%D 2014
%P 271-296
%V 227
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm227-3-3/
%R 10.4064/fm227-3-3
%G en
%F 10_4064_fm227_3_3
Daniel Kasprowski; Mark Powell. Shrinking of toroidal decomposition spaces. Fundamenta Mathematicae, Tome 227 (2014) no. 3, pp. 271-296. doi : 10.4064/fm227-3-3. http://geodesic.mathdoc.fr/articles/10.4064/fm227-3-3/

Cité par Sources :