Consistency of the Silver dichotomy
in generalised Baire space
Fundamenta Mathematicae, Tome 227 (2014) no. 2, pp. 179-186
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Silver's fundamental dichotomy in the classical theory of Borel reducibility states that any Borel (or even co-analytic) equivalence relation with uncountably many classes has a perfect set of classes. The natural generalisation of this to the generalised Baire space $\kappa ^\kappa $ for a regular uncountable $\kappa $ fails in Gödel's $L$, even for $\kappa $-Borel equivalence relations. We show here that Silver's dichotomy for $\kappa $-Borel equivalence relations in $\kappa ^\kappa $ for uncountable regular $\kappa $ is however consistent (with GCH), assuming the existence of $0^\#$.
Keywords:
silvers fundamental dichotomy classical theory borel reducibility states borel even co analytic equivalence relation uncountably many classes has perfect set classes natural generalisation generalised baire space kappa kappa regular uncountable kappa fails dels even kappa borel equivalence relations here silvers dichotomy kappa borel equivalence relations kappa kappa uncountable regular kappa however consistent gch assuming existence
Affiliations des auteurs :
Sy-David Friedman 1
@article{10_4064_fm227_2_4,
author = {Sy-David Friedman},
title = {Consistency of the {Silver} dichotomy
in generalised {Baire} space},
journal = {Fundamenta Mathematicae},
pages = {179--186},
publisher = {mathdoc},
volume = {227},
number = {2},
year = {2014},
doi = {10.4064/fm227-2-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm227-2-4/}
}
TY - JOUR AU - Sy-David Friedman TI - Consistency of the Silver dichotomy in generalised Baire space JO - Fundamenta Mathematicae PY - 2014 SP - 179 EP - 186 VL - 227 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm227-2-4/ DO - 10.4064/fm227-2-4 LA - en ID - 10_4064_fm227_2_4 ER -
Sy-David Friedman. Consistency of the Silver dichotomy in generalised Baire space. Fundamenta Mathematicae, Tome 227 (2014) no. 2, pp. 179-186. doi: 10.4064/fm227-2-4
Cité par Sources :