Determinacy of adversarial Gowers games
Fundamenta Mathematicae, Tome 227 (2014) no. 2, pp. 163-178
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove a game-theoretic dichotomy for $G_{\delta \sigma }$ sets of block sequences in vector spaces that extends, on the one hand, the block Ramsey theorem of W. T. Gowers proved for analytic sets of block sequences and, on the other hand, M. Davis' proof of ${\bf \Sigma }^0_3$ determinacy.
Keywords:
prove game theoretic dichotomy delta sigma sets block sequences vector spaces extends block ramsey theorem gowers proved analytic sets block sequences other davis proof sigma determinacy
Affiliations des auteurs :
Christian Rosendal 1
@article{10_4064_fm227_2_3,
author = {Christian Rosendal},
title = {Determinacy of adversarial {Gowers} games},
journal = {Fundamenta Mathematicae},
pages = {163--178},
publisher = {mathdoc},
volume = {227},
number = {2},
year = {2014},
doi = {10.4064/fm227-2-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm227-2-3/}
}
Christian Rosendal. Determinacy of adversarial Gowers games. Fundamenta Mathematicae, Tome 227 (2014) no. 2, pp. 163-178. doi: 10.4064/fm227-2-3
Cité par Sources :