Smooth conjugacy classes of circle diffeomorphisms with irrational rotation number
Fundamenta Mathematicae, Tome 227 (2014) no. 2, pp. 129-162
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove the $C^1$-density of every $C^r$-conjugacy class in the closed subset of diffeomorphisms of the circle with a given irrational rotation number.
Keywords:
prove density every r conjugacy class closed subset diffeomorphisms circle given irrational rotation number
Affiliations des auteurs :
Christian Bonatti 1 ; Nancy Guelman 2
@article{10_4064_fm227_2_2,
author = {Christian Bonatti and Nancy Guelman},
title = {Smooth conjugacy classes of circle diffeomorphisms with irrational rotation number},
journal = {Fundamenta Mathematicae},
pages = {129--162},
publisher = {mathdoc},
volume = {227},
number = {2},
year = {2014},
doi = {10.4064/fm227-2-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm227-2-2/}
}
TY - JOUR AU - Christian Bonatti AU - Nancy Guelman TI - Smooth conjugacy classes of circle diffeomorphisms with irrational rotation number JO - Fundamenta Mathematicae PY - 2014 SP - 129 EP - 162 VL - 227 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm227-2-2/ DO - 10.4064/fm227-2-2 LA - en ID - 10_4064_fm227_2_2 ER -
%0 Journal Article %A Christian Bonatti %A Nancy Guelman %T Smooth conjugacy classes of circle diffeomorphisms with irrational rotation number %J Fundamenta Mathematicae %D 2014 %P 129-162 %V 227 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/fm227-2-2/ %R 10.4064/fm227-2-2 %G en %F 10_4064_fm227_2_2
Christian Bonatti; Nancy Guelman. Smooth conjugacy classes of circle diffeomorphisms with irrational rotation number. Fundamenta Mathematicae, Tome 227 (2014) no. 2, pp. 129-162. doi: 10.4064/fm227-2-2
Cité par Sources :