A theorem on generic intersections in an o-minimal structure
Fundamenta Mathematicae, Tome 227 (2014) no. 1, pp. 21-25
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Consider a transitive definable action of a Lie group $G$ on a definable manifold $M$. Given two (locally) definable subsets $A$ and $B$ of $M$, we prove that the dimension of the intersection $\sigma (A) \cap B$ is not greater than the expected one for a generic $\sigma \in G$.
Keywords:
consider transitive definable action lie group definable manifold given locally definable subsets prove dimension intersection sigma cap greater expected generic sigma
Affiliations des auteurs :
Krzysztof Jan Nowak  1
@article{10_4064_fm227_1_2,
author = {Krzysztof Jan Nowak},
title = {A theorem on generic intersections in an o-minimal structure},
journal = {Fundamenta Mathematicae},
pages = {21--25},
year = {2014},
volume = {227},
number = {1},
doi = {10.4064/fm227-1-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm227-1-2/}
}
Krzysztof Jan Nowak. A theorem on generic intersections in an o-minimal structure. Fundamenta Mathematicae, Tome 227 (2014) no. 1, pp. 21-25. doi: 10.4064/fm227-1-2
Cité par Sources :