A theorem on generic intersections in an o-minimal structure
Fundamenta Mathematicae, Tome 227 (2014) no. 1, pp. 21-25.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Consider a transitive definable action of a Lie group $G$ on a definable manifold $M$. Given two (locally) definable subsets $A$ and $B$ of $M$, we prove that the dimension of the intersection $\sigma (A) \cap B$ is not greater than the expected one for a generic $\sigma \in G$.
DOI : 10.4064/fm227-1-2
Keywords: consider transitive definable action lie group definable manifold given locally definable subsets prove dimension intersection sigma cap greater expected generic sigma

Krzysztof Jan Nowak 1

1 Institute of Mathematics Faculty of Mathematics and Computer Science Jagiellonian University Łojasiewicza 6 30-348 Kraków, Poland
@article{10_4064_fm227_1_2,
     author = {Krzysztof Jan Nowak},
     title = {A theorem on generic intersections in an o-minimal structure},
     journal = {Fundamenta Mathematicae},
     pages = {21--25},
     publisher = {mathdoc},
     volume = {227},
     number = {1},
     year = {2014},
     doi = {10.4064/fm227-1-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm227-1-2/}
}
TY  - JOUR
AU  - Krzysztof Jan Nowak
TI  - A theorem on generic intersections in an o-minimal structure
JO  - Fundamenta Mathematicae
PY  - 2014
SP  - 21
EP  - 25
VL  - 227
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm227-1-2/
DO  - 10.4064/fm227-1-2
LA  - en
ID  - 10_4064_fm227_1_2
ER  - 
%0 Journal Article
%A Krzysztof Jan Nowak
%T A theorem on generic intersections in an o-minimal structure
%J Fundamenta Mathematicae
%D 2014
%P 21-25
%V 227
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm227-1-2/
%R 10.4064/fm227-1-2
%G en
%F 10_4064_fm227_1_2
Krzysztof Jan Nowak. A theorem on generic intersections in an o-minimal structure. Fundamenta Mathematicae, Tome 227 (2014) no. 1, pp. 21-25. doi : 10.4064/fm227-1-2. http://geodesic.mathdoc.fr/articles/10.4064/fm227-1-2/

Cité par Sources :