Persistence of fixed points under rigid perturbations of maps
Fundamenta Mathematicae, Tome 227 (2014) no. 1, pp. 1-19
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $f:S^1\times [0,1]\to S^1\times [0,1]$ be a real-analytic diffeomorphism which is homotopic to the identity map and preserves an area form. Assume that for some lift $\tilde {f}:\mathbb{R}\times [0,1]\rightarrow \mathbb{R}\times [0,1]$
we have ${\rm Fix}(\tilde{f})=\mathbb{R}\times \{0\}$ and that $\tilde{f}$ positively translates points in $\mathbb{R}\times \{1\}$. Let
$\tilde{f}_\epsilon $ be the perturbation of $\tilde{f}$ by the
rigid horizontal translation $(x,y)\mapsto (x+\epsilon ,y)$. We show that ${\rm Fix}
(\tilde{f}_\epsilon )=\emptyset $
for all $\epsilon >0$ sufficiently small. The proof follows from
Kerékjártó's construction of Brouwer lines for orientation
preserving homeomorphisms of the plane with no fixed points. This result
turns out to be sharp with respect to the regularity assumption: there
exists a diffeomorphism $f$ with all the properties above, except that
$f$ is not real-analytic but only smooth, such that the above conclusion is
false. Such a map is constructed via generating functions.
Keywords:
times times real analytic diffeomorphism which homotopic identity map preserves area form assume lift tilde mathbb times rightarrow mathbb times have fix tilde mathbb times tilde positively translates points mathbb times tilde epsilon perturbation tilde rigid horizontal translation mapsto epsilon fix tilde epsilon emptyset epsilon sufficiently small proof follows ker construction brouwer lines orientation preserving homeomorphisms plane fixed points result turns out sharp respect regularity assumption there exists diffeomorphism properties above except real analytic only smooth above conclusion false map constructed via generating functions
Affiliations des auteurs :
Salvador Addas-Zanata 1 ; Pedro A. S. Salomão 2
@article{10_4064_fm227_1_1,
author = {Salvador Addas-Zanata and Pedro A. S. Salom\~ao},
title = {Persistence of fixed points under rigid perturbations of maps},
journal = {Fundamenta Mathematicae},
pages = {1--19},
publisher = {mathdoc},
volume = {227},
number = {1},
year = {2014},
doi = {10.4064/fm227-1-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm227-1-1/}
}
TY - JOUR AU - Salvador Addas-Zanata AU - Pedro A. S. Salomão TI - Persistence of fixed points under rigid perturbations of maps JO - Fundamenta Mathematicae PY - 2014 SP - 1 EP - 19 VL - 227 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm227-1-1/ DO - 10.4064/fm227-1-1 LA - en ID - 10_4064_fm227_1_1 ER -
%0 Journal Article %A Salvador Addas-Zanata %A Pedro A. S. Salomão %T Persistence of fixed points under rigid perturbations of maps %J Fundamenta Mathematicae %D 2014 %P 1-19 %V 227 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/fm227-1-1/ %R 10.4064/fm227-1-1 %G en %F 10_4064_fm227_1_1
Salvador Addas-Zanata; Pedro A. S. Salomão. Persistence of fixed points under rigid perturbations of maps. Fundamenta Mathematicae, Tome 227 (2014) no. 1, pp. 1-19. doi: 10.4064/fm227-1-1
Cité par Sources :