A dynamical invariant for Sierpiński cardioid Julia sets
Fundamenta Mathematicae, Tome 226 (2014) no. 3, pp. 253-277
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
For the family of rational maps $z^n + \lambda /z^n$ where $n \geq 3$, it is known that there are infinitely many small copies of the Mandelbrot set that are buried in the parameter plane, i.e., they do not extend to the outer boundary of this set. For parameters lying in the main cardioids of these Mandelbrot sets, the corresponding Julia sets are always Sierpiński curves, and so they are all homeomorphic to one another. However, it is known that only those cardioids that are symmetrically located in the parameter plane have conjugate dynamics. We produce a dynamical invariant that explains why these maps have different dynamics.
Keywords:
family rational maps lambda where geq known there infinitely many small copies mandelbrot set buried parameter plane extend outer boundary set parameters lying main cardioids these mandelbrot sets corresponding julia sets always sierpi ski curves homeomorphic another however known only those cardioids symmetrically located parameter plane have conjugate dynamics produce dynamical invariant explains why these maps have different dynamics
Affiliations des auteurs :
Paul Blanchard 1 ; Daniel Cuzzocreo 1 ; Robert L. Devaney 1 ; Elizabeth Fitzgibbon 1 ; Stefano Silvestri 1
@article{10_4064_fm226_3_5,
author = {Paul Blanchard and Daniel Cuzzocreo and Robert L. Devaney and Elizabeth Fitzgibbon and Stefano Silvestri},
title = {A dynamical invariant for {Sierpi\'nski} cardioid {Julia} sets},
journal = {Fundamenta Mathematicae},
pages = {253--277},
publisher = {mathdoc},
volume = {226},
number = {3},
year = {2014},
doi = {10.4064/fm226-3-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm226-3-5/}
}
TY - JOUR AU - Paul Blanchard AU - Daniel Cuzzocreo AU - Robert L. Devaney AU - Elizabeth Fitzgibbon AU - Stefano Silvestri TI - A dynamical invariant for Sierpiński cardioid Julia sets JO - Fundamenta Mathematicae PY - 2014 SP - 253 EP - 277 VL - 226 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm226-3-5/ DO - 10.4064/fm226-3-5 LA - en ID - 10_4064_fm226_3_5 ER -
%0 Journal Article %A Paul Blanchard %A Daniel Cuzzocreo %A Robert L. Devaney %A Elizabeth Fitzgibbon %A Stefano Silvestri %T A dynamical invariant for Sierpiński cardioid Julia sets %J Fundamenta Mathematicae %D 2014 %P 253-277 %V 226 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/fm226-3-5/ %R 10.4064/fm226-3-5 %G en %F 10_4064_fm226_3_5
Paul Blanchard; Daniel Cuzzocreo; Robert L. Devaney; Elizabeth Fitzgibbon; Stefano Silvestri. A dynamical invariant for Sierpiński cardioid Julia sets. Fundamenta Mathematicae, Tome 226 (2014) no. 3, pp. 253-277. doi: 10.4064/fm226-3-5
Cité par Sources :