A dynamical invariant for Sierpiński cardioid Julia sets
Fundamenta Mathematicae, Tome 226 (2014) no. 3, pp. 253-277.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For the family of rational maps $z^n + \lambda /z^n$ where $n \geq 3$, it is known that there are infinitely many small copies of the Mandelbrot set that are buried in the parameter plane, i.e., they do not extend to the outer boundary of this set. For parameters lying in the main cardioids of these Mandelbrot sets, the corresponding Julia sets are always Sierpiński curves, and so they are all homeomorphic to one another. However, it is known that only those cardioids that are symmetrically located in the parameter plane have conjugate dynamics. We produce a dynamical invariant that explains why these maps have different dynamics.
DOI : 10.4064/fm226-3-5
Keywords: family rational maps lambda where geq known there infinitely many small copies mandelbrot set buried parameter plane extend outer boundary set parameters lying main cardioids these mandelbrot sets corresponding julia sets always sierpi ski curves homeomorphic another however known only those cardioids symmetrically located parameter plane have conjugate dynamics produce dynamical invariant explains why these maps have different dynamics

Paul Blanchard 1 ; Daniel Cuzzocreo 1 ; Robert L. Devaney 1 ; Elizabeth Fitzgibbon 1 ; Stefano Silvestri 1

1 Department of Mathematics Boston University 111 Cummington Mall Boston, MA 02215, U.S.A.
@article{10_4064_fm226_3_5,
     author = {Paul Blanchard and Daniel Cuzzocreo and Robert L. Devaney and Elizabeth Fitzgibbon and Stefano Silvestri},
     title = {A dynamical invariant for {Sierpi\'nski} cardioid {Julia} sets},
     journal = {Fundamenta Mathematicae},
     pages = {253--277},
     publisher = {mathdoc},
     volume = {226},
     number = {3},
     year = {2014},
     doi = {10.4064/fm226-3-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm226-3-5/}
}
TY  - JOUR
AU  - Paul Blanchard
AU  - Daniel Cuzzocreo
AU  - Robert L. Devaney
AU  - Elizabeth Fitzgibbon
AU  - Stefano Silvestri
TI  - A dynamical invariant for Sierpiński cardioid Julia sets
JO  - Fundamenta Mathematicae
PY  - 2014
SP  - 253
EP  - 277
VL  - 226
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm226-3-5/
DO  - 10.4064/fm226-3-5
LA  - en
ID  - 10_4064_fm226_3_5
ER  - 
%0 Journal Article
%A Paul Blanchard
%A Daniel Cuzzocreo
%A Robert L. Devaney
%A Elizabeth Fitzgibbon
%A Stefano Silvestri
%T A dynamical invariant for Sierpiński cardioid Julia sets
%J Fundamenta Mathematicae
%D 2014
%P 253-277
%V 226
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm226-3-5/
%R 10.4064/fm226-3-5
%G en
%F 10_4064_fm226_3_5
Paul Blanchard; Daniel Cuzzocreo; Robert L. Devaney; Elizabeth Fitzgibbon; Stefano Silvestri. A dynamical invariant for Sierpiński cardioid Julia sets. Fundamenta Mathematicae, Tome 226 (2014) no. 3, pp. 253-277. doi : 10.4064/fm226-3-5. http://geodesic.mathdoc.fr/articles/10.4064/fm226-3-5/

Cité par Sources :