Locally $\Sigma _{1}$-definable well-orders of ${\rm H}(\kappa ^+)$
Fundamenta Mathematicae, Tome 226 (2014) no. 3, pp. 221-236.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Given an uncountable cardinal $\kappa$ with $\kappa=\kappa^{{}\kappa}$ and $2^\kappa$ regular, we show that there is a forcing that preserves cofinalities less than or equal to $2^\kappa$ and forces the existence of a well-order of ${\rm H}(\kappa^+)$ that is definable over $\langle{\rm H}(\kappa^+),\in\rangle$ by a $\Sigma_1$-formula with parameters. This shows that, in contrast to the case “$\kappa=\omega$”, the existence of a locally definable well-order of ${\rm H}(\kappa^+)$ of low complexity is consistent with failures of the ${\rm GCH}$ at $\kappa$. We also show that the forcing mentioned above introduces a Bernstein subset of ${}^\kappa\kappa$ that is definable over $\langle{\rm H}(\kappa^+),\in\rangle$ by a $\Delta_1$-formula with parameters.
DOI : 10.4064/fm226-3-2
Keywords: given uncountable cardinal kappa kappa kappa kappa kappa regular there forcing preserves cofinalities equal kappa forces existence well order kappa definable langle kappa rangle sigma formula parameters shows contrast kappa omega existence locally definable well order kappa low complexity consistent failures gch kappa forcing mentioned above introduces bernstein subset kappa kappa definable langle kappa rangle delta formula parameters

Peter Holy 1 ; Philipp Lücke 2

1 School of Mathematics University of Bristol University Walk Bristol BS8 1TW, United Kingdom
2 Mathematisches Institut Rheinische Friedrich-Wilhelms-Universität Bonn Endenicher Allee 60 53115 Bonn, Germany
@article{10_4064_fm226_3_2,
     author = {Peter Holy and Philipp L\"ucke},
     title = {Locally $\Sigma _{1}$-definable well-orders of ${\rm H}(\kappa ^+)$},
     journal = {Fundamenta Mathematicae},
     pages = {221--236},
     publisher = {mathdoc},
     volume = {226},
     number = {3},
     year = {2014},
     doi = {10.4064/fm226-3-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm226-3-2/}
}
TY  - JOUR
AU  - Peter Holy
AU  - Philipp Lücke
TI  - Locally $\Sigma _{1}$-definable well-orders of ${\rm H}(\kappa ^+)$
JO  - Fundamenta Mathematicae
PY  - 2014
SP  - 221
EP  - 236
VL  - 226
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm226-3-2/
DO  - 10.4064/fm226-3-2
LA  - en
ID  - 10_4064_fm226_3_2
ER  - 
%0 Journal Article
%A Peter Holy
%A Philipp Lücke
%T Locally $\Sigma _{1}$-definable well-orders of ${\rm H}(\kappa ^+)$
%J Fundamenta Mathematicae
%D 2014
%P 221-236
%V 226
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm226-3-2/
%R 10.4064/fm226-3-2
%G en
%F 10_4064_fm226_3_2
Peter Holy; Philipp Lücke. Locally $\Sigma _{1}$-definable well-orders of ${\rm H}(\kappa ^+)$. Fundamenta Mathematicae, Tome 226 (2014) no. 3, pp. 221-236. doi : 10.4064/fm226-3-2. http://geodesic.mathdoc.fr/articles/10.4064/fm226-3-2/

Cité par Sources :