Countable dense homogeneity and $\lambda $-sets
Fundamenta Mathematicae, Tome 226 (2014) no. 2, pp. 157-172.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We show that all sufficiently nice $\lambda $-sets are countable dense homogeneous $(\mathsf {CDH})$. From this fact we conclude that for every uncountable cardinal $\kappa \le \mathfrak {b}$ there is a countable dense homogeneous metric space of size $\kappa $. Moreover, the existence of a meager in itself countable dense homogeneous metric space of size $\kappa $ is equivalent to the existence of a $\lambda $-set of size $\kappa $. On the other hand, it is consistent with the continuum arbitrarily large that every ${{\mathsf {CDH}}}$ metric space has size either $\omega _1$ or $\mathfrak c$. An example of a Baire $\mathsf {CDH}$ metric space which is not completely metrizable is presented. Finally, answering a question of Arhangel'skii and van Mill we show that that there is a compact non-metrizable $\mathsf {CDH}$ space in ZFC.
DOI : 10.4064/fm226-2-5
Keywords: sufficiently nice lambda sets countable dense homogeneous mathsf cdh conclude every uncountable cardinal kappa mathfrak there countable dense homogeneous metric space size kappa moreover existence meager itself countable dense homogeneous metric space size kappa equivalent existence lambda set size kappa other consistent continuum arbitrarily large every mathsf cdh metric space has size either omega nbsp mathfrak example baire mathsf cdh metric space which completely metrizable presented finally answering question arhangelskii van mill that there compact non metrizable mathsf cdh space zfc

Rodrigo Hernández-Gutiérrez 1 ; Michael Hrušák 2 ; Jan van Mill 3

1 Department of Mathematics and Statistics York University Toronto, ON M3J 1P3, Canada
2 Centro de Ciencias Matemáticas UNAM A.P. 61-3 Xangari Morelia, Michoacán 58089, México
3 Faculty of Sciences VU University Amsterdam De Boelelaan 1081A 1081 HV Amsterdam, The Netherlands and Faculty of Electrical Engineering Mathematics and Computer Science TU Delft Postbus 5031 2600 GA Delft, The Netherlands and Department of Mathematical Sciences University of South Africa P.O. Box 392 0003 Unisa, South Africa
@article{10_4064_fm226_2_5,
     author = {Rodrigo Hern\'andez-Guti\'errez and Michael Hru\v{s}\'ak and Jan van Mill},
     title = {Countable dense homogeneity and $\lambda $-sets},
     journal = {Fundamenta Mathematicae},
     pages = {157--172},
     publisher = {mathdoc},
     volume = {226},
     number = {2},
     year = {2014},
     doi = {10.4064/fm226-2-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm226-2-5/}
}
TY  - JOUR
AU  - Rodrigo Hernández-Gutiérrez
AU  - Michael Hrušák
AU  - Jan van Mill
TI  - Countable dense homogeneity and $\lambda $-sets
JO  - Fundamenta Mathematicae
PY  - 2014
SP  - 157
EP  - 172
VL  - 226
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm226-2-5/
DO  - 10.4064/fm226-2-5
LA  - en
ID  - 10_4064_fm226_2_5
ER  - 
%0 Journal Article
%A Rodrigo Hernández-Gutiérrez
%A Michael Hrušák
%A Jan van Mill
%T Countable dense homogeneity and $\lambda $-sets
%J Fundamenta Mathematicae
%D 2014
%P 157-172
%V 226
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm226-2-5/
%R 10.4064/fm226-2-5
%G en
%F 10_4064_fm226_2_5
Rodrigo Hernández-Gutiérrez; Michael Hrušák; Jan van Mill. Countable dense homogeneity and $\lambda $-sets. Fundamenta Mathematicae, Tome 226 (2014) no. 2, pp. 157-172. doi : 10.4064/fm226-2-5. http://geodesic.mathdoc.fr/articles/10.4064/fm226-2-5/

Cité par Sources :