Embedding orders into the cardinals with $\mathsf {DC}_{\kappa} $
Fundamenta Mathematicae, Tome 226 (2014) no. 2, pp. 143-156.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Jech proved that every partially ordered set can be embedded into the cardinals of some model of $\mathsf {ZF}$. We extend this result to show that every partially ordered set can be embedded into the cardinals of some model of $\mathsf {ZF}+\mathsf {DC}_{\kappa }$ for any regular $\kappa $. We use this theorem to show that for all $\kappa $, the assumption of $\mathsf {DC}_\kappa $ does not entail that there are no decreasing chains of cardinals. We also show how to extend the result to and embed into the cardinals a proper class which is definable over the ground model. We use this extension to give a large-cardinals-free proof of independence of the weak choice principle known as $\mathsf {WISC}$ from $\mathsf {DC}_\kappa $.
DOI : 10.4064/fm226-2-4
Keywords: jech proved every partially ordered set embedded cardinals model mathsf extend result every partially ordered set embedded cardinals model mathsf mathsf kappa regular kappa theorem kappa assumption mathsf kappa does entail there decreasing chains cardinals extend result embed cardinals proper class which definable ground model extension large cardinals free proof independence weak choice principle known mathsf wisc mathsf kappa

Asaf Karagila 1

1 Einstein Institute of Mathematics Edmond J. Safra Campus The Hebrew University of Jerusalem Givat Ram, Jerusalem, 91904, Israel
@article{10_4064_fm226_2_4,
     author = {Asaf Karagila},
     title = {Embedding orders into the cardinals with $\mathsf {DC}_{\kappa} $},
     journal = {Fundamenta Mathematicae},
     pages = {143--156},
     publisher = {mathdoc},
     volume = {226},
     number = {2},
     year = {2014},
     doi = {10.4064/fm226-2-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm226-2-4/}
}
TY  - JOUR
AU  - Asaf Karagila
TI  - Embedding orders into the cardinals with $\mathsf {DC}_{\kappa} $
JO  - Fundamenta Mathematicae
PY  - 2014
SP  - 143
EP  - 156
VL  - 226
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm226-2-4/
DO  - 10.4064/fm226-2-4
LA  - en
ID  - 10_4064_fm226_2_4
ER  - 
%0 Journal Article
%A Asaf Karagila
%T Embedding orders into the cardinals with $\mathsf {DC}_{\kappa} $
%J Fundamenta Mathematicae
%D 2014
%P 143-156
%V 226
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm226-2-4/
%R 10.4064/fm226-2-4
%G en
%F 10_4064_fm226_2_4
Asaf Karagila. Embedding orders into the cardinals with $\mathsf {DC}_{\kappa} $. Fundamenta Mathematicae, Tome 226 (2014) no. 2, pp. 143-156. doi : 10.4064/fm226-2-4. http://geodesic.mathdoc.fr/articles/10.4064/fm226-2-4/

Cité par Sources :