On finite groups acting on a connected sum of 3-manifolds $S^2\times S^1$
Fundamenta Mathematicae, Tome 226 (2014) no. 2, pp. 131-142.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $H_g$ denote the closed 3-manifold obtained as the connected sum of $g$ copies of $S^2 \times S^1$, with free fundamental group of rank $g$. We prove that, for a finite group $G$ acting on $H_g$ which induces a faithful action on the fundamental group, there is an upper bound for the order of $G$ which is quadratic in $g$, but there does not exist a linear bound in $g$. This implies then a Jordan-type bound for arbitrary finite group actions on $H_g$ which is quadratic in $g$. For the proofs we develop a calculus for finite group actions on $H_g$, by codifying such actions by handle-orbifolds and finite graphs of finite groups.
DOI : 10.4064/fm226-2-3
Keywords: denote closed manifold obtained connected sum nbsp copies times fundamental group rank nbsp prove finite group acting which induces faithful action fundamental group there upper bound order nbsp which quadratic there does exist linear bound nbsp implies jordan type bound arbitrary finite group actions which quadratic proofs develop calculus finite group actions codifying actions handle orbifolds finite graphs finite groups

Bruno P. Zimmermann 1

1 Dipartimento di Matematica e Geoscienze Università degli Studi di Trieste 34127 Trieste, Italy
@article{10_4064_fm226_2_3,
     author = {Bruno P. Zimmermann},
     title = {On finite groups acting on a connected sum
 of 3-manifolds $S^2\times S^1$},
     journal = {Fundamenta Mathematicae},
     pages = {131--142},
     publisher = {mathdoc},
     volume = {226},
     number = {2},
     year = {2014},
     doi = {10.4064/fm226-2-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm226-2-3/}
}
TY  - JOUR
AU  - Bruno P. Zimmermann
TI  - On finite groups acting on a connected sum
 of 3-manifolds $S^2\times S^1$
JO  - Fundamenta Mathematicae
PY  - 2014
SP  - 131
EP  - 142
VL  - 226
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm226-2-3/
DO  - 10.4064/fm226-2-3
LA  - en
ID  - 10_4064_fm226_2_3
ER  - 
%0 Journal Article
%A Bruno P. Zimmermann
%T On finite groups acting on a connected sum
 of 3-manifolds $S^2\times S^1$
%J Fundamenta Mathematicae
%D 2014
%P 131-142
%V 226
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm226-2-3/
%R 10.4064/fm226-2-3
%G en
%F 10_4064_fm226_2_3
Bruno P. Zimmermann. On finite groups acting on a connected sum
 of 3-manifolds $S^2\times S^1$. Fundamenta Mathematicae, Tome 226 (2014) no. 2, pp. 131-142. doi : 10.4064/fm226-2-3. http://geodesic.mathdoc.fr/articles/10.4064/fm226-2-3/

Cité par Sources :