Relative subanalytic sheaves
Fundamenta Mathematicae, Tome 226 (2014) no. 1, pp. 79-99.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Given a real analytic manifold $Y$, denote by $Y_{\rm sa}$ the associated subanalytic site. Now consider a product $Y=X\times S$. We construct the endofunctor $\mathcal {F}\mapsto \mathcal {F}^{S}$ on the category of sheaves on $Y_{\rm sa}$ and study its properties. Roughly speaking, $\mathcal {F}^S$ is a sheaf on $X_{\rm sa}\times S$. As an application, one can now define sheaves of functions on $Y$ which are tempered or Whitney in the relative sense, that is, only with respect to $X$.
DOI : 10.4064/fm226-1-5
Keywords: given real analytic manifold denote associated subanalytic site consider product times construct endofunctor mathcal mapsto mathcal category sheaves study its properties roughly speaking mathcal sheaf times application define sheaves functions which tempered whitney relative sense only respect

Teresa Monteiro Fernandes 1 ; Luca Prelli 1

1 Centro de Matemática e Aplicações Fundamentais e Departamento de Matemática da FCUL, Complexo 2 2 Avenida Prof. Gama Pinto 1649-003, Lisboa, Portugal
@article{10_4064_fm226_1_5,
     author = {Teresa Monteiro Fernandes and Luca Prelli},
     title = {Relative subanalytic sheaves},
     journal = {Fundamenta Mathematicae},
     pages = {79--99},
     publisher = {mathdoc},
     volume = {226},
     number = {1},
     year = {2014},
     doi = {10.4064/fm226-1-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm226-1-5/}
}
TY  - JOUR
AU  - Teresa Monteiro Fernandes
AU  - Luca Prelli
TI  - Relative subanalytic sheaves
JO  - Fundamenta Mathematicae
PY  - 2014
SP  - 79
EP  - 99
VL  - 226
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm226-1-5/
DO  - 10.4064/fm226-1-5
LA  - en
ID  - 10_4064_fm226_1_5
ER  - 
%0 Journal Article
%A Teresa Monteiro Fernandes
%A Luca Prelli
%T Relative subanalytic sheaves
%J Fundamenta Mathematicae
%D 2014
%P 79-99
%V 226
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm226-1-5/
%R 10.4064/fm226-1-5
%G en
%F 10_4064_fm226_1_5
Teresa Monteiro Fernandes; Luca Prelli. Relative subanalytic sheaves. Fundamenta Mathematicae, Tome 226 (2014) no. 1, pp. 79-99. doi : 10.4064/fm226-1-5. http://geodesic.mathdoc.fr/articles/10.4064/fm226-1-5/

Cité par Sources :