Relative subanalytic sheaves
Fundamenta Mathematicae, Tome 226 (2014) no. 1, pp. 79-99
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Given a real analytic manifold $Y$, denote by $Y_{\rm sa}$ the associated subanalytic site. Now consider a product $Y=X\times S$. We construct the endofunctor $\mathcal {F}\mapsto \mathcal {F}^{S}$ on the category of sheaves on $Y_{\rm sa}$ and study its properties. Roughly speaking, $\mathcal {F}^S$ is a sheaf on $X_{\rm sa}\times S$. As an application, one can now define sheaves of functions on $Y$ which are tempered or Whitney in the relative sense, that is, only with respect to $X$.
Keywords:
given real analytic manifold denote associated subanalytic site consider product times construct endofunctor mathcal mapsto mathcal category sheaves study its properties roughly speaking mathcal sheaf times application define sheaves functions which tempered whitney relative sense only respect
Affiliations des auteurs :
Teresa Monteiro Fernandes 1 ; Luca Prelli 1
@article{10_4064_fm226_1_5,
author = {Teresa Monteiro Fernandes and Luca Prelli},
title = {Relative subanalytic sheaves},
journal = {Fundamenta Mathematicae},
pages = {79--99},
publisher = {mathdoc},
volume = {226},
number = {1},
year = {2014},
doi = {10.4064/fm226-1-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm226-1-5/}
}
Teresa Monteiro Fernandes; Luca Prelli. Relative subanalytic sheaves. Fundamenta Mathematicae, Tome 226 (2014) no. 1, pp. 79-99. doi: 10.4064/fm226-1-5
Cité par Sources :