Normal numbers and the Borel hierarchy
Fundamenta Mathematicae, Tome 226 (2014) no. 1, pp. 63-77
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We show that the set of absolutely normal numbers is $\mathbf \Pi ^0_3$-complete in the Borel hierarchy of subsets of real numbers. Similarly, the set of absolutely normal numbers is $\Pi ^0_3$-complete in the effective Borel hierarchy.
Keywords:
set absolutely normal numbers mathbf complete borel hierarchy subsets real numbers similarly set absolutely normal numbers complete effective borel hierarchy
Affiliations des auteurs :
Verónica Becher 1 ; Pablo Ariel Heiber 2 ; Theodore A. Slaman 3
@article{10_4064_fm226_1_4,
author = {Ver\'onica Becher and Pablo Ariel Heiber and Theodore A. Slaman},
title = {Normal numbers and the {Borel} hierarchy},
journal = {Fundamenta Mathematicae},
pages = {63--77},
publisher = {mathdoc},
volume = {226},
number = {1},
year = {2014},
doi = {10.4064/fm226-1-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm226-1-4/}
}
TY - JOUR AU - Verónica Becher AU - Pablo Ariel Heiber AU - Theodore A. Slaman TI - Normal numbers and the Borel hierarchy JO - Fundamenta Mathematicae PY - 2014 SP - 63 EP - 77 VL - 226 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm226-1-4/ DO - 10.4064/fm226-1-4 LA - en ID - 10_4064_fm226_1_4 ER -
Verónica Becher; Pablo Ariel Heiber; Theodore A. Slaman. Normal numbers and the Borel hierarchy. Fundamenta Mathematicae, Tome 226 (2014) no. 1, pp. 63-77. doi: 10.4064/fm226-1-4
Cité par Sources :