Amenability and unique ergodicity
of automorphism groups of Fraïssé structures
Fundamenta Mathematicae, Tome 226 (2014) no. 1, pp. 41-61
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
In this paper we consider those Fraïssé classes which admit companion classes in the sense of [KPT]. We find a necessary and sufficient condition for the automorphism group of the Fraïssé limit to be amenable and apply it to prove the non-amenability of the automorphism groups of the directed graph $\mathbf {S}(3)$ and the boron tree structure $\mathbf {T}$. Also, we provide a negative answer to the Unique Ergodicity-Generic Point problem of Angel–Kechris–Lyons [AKL]. By considering $\mathrm {GL}(\mathbf {V}_\infty )$, where $\mathbf {V}_\infty $ is the countably infinite-dimensional vector space over a finite field $F_q$, we show that the unique invariant measure on the universal minimal flow of $\mathrm {GL}(\mathbf {V}_\infty )$ is not supported on the generic orbit.
Mots-clés :
paper consider those fra classes which admit companion classes sense kpt necessary sufficient condition automorphism group fra limit amenable apply prove non amenability automorphism groups directed graph mathbf boron tree structure nbsp mathbf provide negative answer unique ergodicity generic point problem angel kechris lyons akl considering mathrm mathbf infty where mathbf infty countably infinite dimensional vector space finite field unique invariant measure universal minimal flow mathrm mathbf infty supported generic orbit
Affiliations des auteurs :
Andy Zucker 1
@article{10_4064_fm226_1_3,
author = {Andy Zucker},
title = {Amenability and unique ergodicity
of automorphism groups of {Fra{\"\i}ss\'e} structures},
journal = {Fundamenta Mathematicae},
pages = {41--61},
year = {2014},
volume = {226},
number = {1},
doi = {10.4064/fm226-1-3},
language = {fr},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm226-1-3/}
}
TY - JOUR AU - Andy Zucker TI - Amenability and unique ergodicity of automorphism groups of Fraïssé structures JO - Fundamenta Mathematicae PY - 2014 SP - 41 EP - 61 VL - 226 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/fm226-1-3/ DO - 10.4064/fm226-1-3 LA - fr ID - 10_4064_fm226_1_3 ER -
Andy Zucker. Amenability and unique ergodicity of automorphism groups of Fraïssé structures. Fundamenta Mathematicae, Tome 226 (2014) no. 1, pp. 41-61. doi: 10.4064/fm226-1-3
Cité par Sources :