Amenability and unique ergodicity of automorphism groups of Fraïssé structures
Fundamenta Mathematicae, Tome 226 (2014) no. 1, pp. 41-61.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

In this paper we consider those Fraïssé classes which admit companion classes in the sense of [KPT]. We find a necessary and sufficient condition for the automorphism group of the Fraïssé limit to be amenable and apply it to prove the non-amenability of the automorphism groups of the directed graph $\mathbf {S}(3)$ and the boron tree structure $\mathbf {T}$. Also, we provide a negative answer to the Unique Ergodicity-Generic Point problem of Angel–Kechris–Lyons [AKL]. By considering $\mathrm {GL}(\mathbf {V}_\infty )$, where $\mathbf {V}_\infty $ is the countably infinite-dimensional vector space over a finite field $F_q$, we show that the unique invariant measure on the universal minimal flow of $\mathrm {GL}(\mathbf {V}_\infty )$ is not supported on the generic orbit.
DOI : 10.4064/fm226-1-3
Mots-clés : paper consider those fra classes which admit companion classes sense kpt necessary sufficient condition automorphism group fra limit amenable apply prove non amenability automorphism groups directed graph mathbf boron tree structure nbsp mathbf provide negative answer unique ergodicity generic point problem angel kechris lyons akl considering mathrm mathbf infty where mathbf infty countably infinite dimensional vector space finite field unique invariant measure universal minimal flow mathrm mathbf infty supported generic orbit

Andy Zucker 1

1 Department of Mathematical Sciences Carnegie Mellon University Pittsburgh, PA 15213, U.S.A.
@article{10_4064_fm226_1_3,
     author = {Andy Zucker},
     title = {Amenability and unique ergodicity
 of automorphism groups of {Fra{\"\i}ss\'e} structures},
     journal = {Fundamenta Mathematicae},
     pages = {41--61},
     publisher = {mathdoc},
     volume = {226},
     number = {1},
     year = {2014},
     doi = {10.4064/fm226-1-3},
     language = {fr},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm226-1-3/}
}
TY  - JOUR
AU  - Andy Zucker
TI  - Amenability and unique ergodicity
 of automorphism groups of Fraïssé structures
JO  - Fundamenta Mathematicae
PY  - 2014
SP  - 41
EP  - 61
VL  - 226
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm226-1-3/
DO  - 10.4064/fm226-1-3
LA  - fr
ID  - 10_4064_fm226_1_3
ER  - 
%0 Journal Article
%A Andy Zucker
%T Amenability and unique ergodicity
 of automorphism groups of Fraïssé structures
%J Fundamenta Mathematicae
%D 2014
%P 41-61
%V 226
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm226-1-3/
%R 10.4064/fm226-1-3
%G fr
%F 10_4064_fm226_1_3
Andy Zucker. Amenability and unique ergodicity
 of automorphism groups of Fraïssé structures. Fundamenta Mathematicae, Tome 226 (2014) no. 1, pp. 41-61. doi : 10.4064/fm226-1-3. http://geodesic.mathdoc.fr/articles/10.4064/fm226-1-3/

Cité par Sources :