Symmetries of embedded complete bipartite graphs
Fundamenta Mathematicae, Tome 226 (2014) no. 1, pp. 1-16.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We characterize which automorphisms of an arbitrary complete bipartite graph $K_{n,m}$ can be induced by a homeomorphism of some embedding of the graph in $S^3$.
DOI : 10.4064/fm226-1-1
Keywords: characterize which automorphisms arbitrary complete bipartite graph induced homeomorphism embedding graph

Erica Flapan 1 ; Nicole Lehle 1 ; Blake Mellor 2 ; Matt Pittluck 2 ; Xan Vongsathorn 1

1 Department of Mathematics Pomona College Claremont, CA 91711, U.S.A.
2 Department of Mathematics Loyola Marymount University Los Angeles, CA 90045, U.S.A.
@article{10_4064_fm226_1_1,
     author = {Erica Flapan and Nicole Lehle and Blake Mellor and Matt Pittluck and Xan Vongsathorn},
     title = {Symmetries of embedded complete bipartite graphs},
     journal = {Fundamenta Mathematicae},
     pages = {1--16},
     publisher = {mathdoc},
     volume = {226},
     number = {1},
     year = {2014},
     doi = {10.4064/fm226-1-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm226-1-1/}
}
TY  - JOUR
AU  - Erica Flapan
AU  - Nicole Lehle
AU  - Blake Mellor
AU  - Matt Pittluck
AU  - Xan Vongsathorn
TI  - Symmetries of embedded complete bipartite graphs
JO  - Fundamenta Mathematicae
PY  - 2014
SP  - 1
EP  - 16
VL  - 226
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm226-1-1/
DO  - 10.4064/fm226-1-1
LA  - en
ID  - 10_4064_fm226_1_1
ER  - 
%0 Journal Article
%A Erica Flapan
%A Nicole Lehle
%A Blake Mellor
%A Matt Pittluck
%A Xan Vongsathorn
%T Symmetries of embedded complete bipartite graphs
%J Fundamenta Mathematicae
%D 2014
%P 1-16
%V 226
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm226-1-1/
%R 10.4064/fm226-1-1
%G en
%F 10_4064_fm226_1_1
Erica Flapan; Nicole Lehle; Blake Mellor; Matt Pittluck; Xan Vongsathorn. Symmetries of embedded complete bipartite graphs. Fundamenta Mathematicae, Tome 226 (2014) no. 1, pp. 1-16. doi : 10.4064/fm226-1-1. http://geodesic.mathdoc.fr/articles/10.4064/fm226-1-1/

Cité par Sources :