Statistical stability of geometric Lorenz attractors
Fundamenta Mathematicae, Tome 224 (2014) no. 3, pp. 219-231
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We consider the robust family of geometric Lorenz attractors. These attractors are chaotic, in the sense that they are transitive and have sensitive dependence on initial conditions. Moreover, they support SRB measures whose ergodic basins cover a full Lebesgue measure subset of points in the topological basin of attraction. Here we prove that the SRB measures depend continuously on the dynamics in the weak$^\ast $ topology.
Keywords:
consider robust family geometric lorenz attractors these attractors chaotic sense transitive have sensitive dependence initial conditions moreover support srb measures whose ergodic basins cover full lebesgue measure subset points topological basin attraction here prove srb measures depend continuously dynamics weak ast topology
Affiliations des auteurs :
José F. Alves 1 ; Mohammad Soufi 1
@article{10_4064_fm224_3_2,
author = {Jos\'e F. Alves and Mohammad Soufi},
title = {Statistical stability of geometric {Lorenz} attractors},
journal = {Fundamenta Mathematicae},
pages = {219--231},
publisher = {mathdoc},
volume = {224},
number = {3},
year = {2014},
doi = {10.4064/fm224-3-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm224-3-2/}
}
TY - JOUR AU - José F. Alves AU - Mohammad Soufi TI - Statistical stability of geometric Lorenz attractors JO - Fundamenta Mathematicae PY - 2014 SP - 219 EP - 231 VL - 224 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm224-3-2/ DO - 10.4064/fm224-3-2 LA - en ID - 10_4064_fm224_3_2 ER -
José F. Alves; Mohammad Soufi. Statistical stability of geometric Lorenz attractors. Fundamenta Mathematicae, Tome 224 (2014) no. 3, pp. 219-231. doi: 10.4064/fm224-3-2
Cité par Sources :