Effective decomposition of $\sigma $-continuous Borel functions
Fundamenta Mathematicae, Tome 224 (2014) no. 2, pp. 187-202.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove that if a $\varDelta^1_1$ function $f$ with $\varSigma^1_1$ domain $X$ is $\sigma$-continuous then one can find a $\varDelta^1_1$ covering $(A_n)_{n\in \omega}$ of $X$ such that $f_{\vert {A_n}}$ is continuous for all $n$. This is an effective version of a recent result by Pawlikowski and Sabok, generalizing an earlier result of Solecki.
DOI : 10.4064/fm224-2-4
Keywords: prove vardelta function varsigma domain sigma continuous vardelta covering omega vert continuous effective version recent result pawlikowski sabok generalizing earlier result solecki

Gabriel Debs 1

1 Analyse Fonctionnelle Institut Mathématique de Jussieu Boîte 186 4, Place Jussieu 75252 Paris Cedex 05, France
@article{10_4064_fm224_2_4,
     author = {Gabriel Debs},
     title = {Effective decomposition of $\sigma $-continuous {Borel} functions},
     journal = {Fundamenta Mathematicae},
     pages = {187--202},
     publisher = {mathdoc},
     volume = {224},
     number = {2},
     year = {2014},
     doi = {10.4064/fm224-2-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm224-2-4/}
}
TY  - JOUR
AU  - Gabriel Debs
TI  - Effective decomposition of $\sigma $-continuous Borel functions
JO  - Fundamenta Mathematicae
PY  - 2014
SP  - 187
EP  - 202
VL  - 224
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm224-2-4/
DO  - 10.4064/fm224-2-4
LA  - en
ID  - 10_4064_fm224_2_4
ER  - 
%0 Journal Article
%A Gabriel Debs
%T Effective decomposition of $\sigma $-continuous Borel functions
%J Fundamenta Mathematicae
%D 2014
%P 187-202
%V 224
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm224-2-4/
%R 10.4064/fm224-2-4
%G en
%F 10_4064_fm224_2_4
Gabriel Debs. Effective decomposition of $\sigma $-continuous Borel functions. Fundamenta Mathematicae, Tome 224 (2014) no. 2, pp. 187-202. doi : 10.4064/fm224-2-4. http://geodesic.mathdoc.fr/articles/10.4064/fm224-2-4/

Cité par Sources :