Effective decomposition of $\sigma $-continuous Borel functions
Fundamenta Mathematicae, Tome 224 (2014) no. 2, pp. 187-202
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We prove that if a $\varDelta^1_1$ function $f$ with
$\varSigma^1_1$ domain $X$ is $\sigma$-continuous then
one can find a $\varDelta^1_1$ covering $(A_n)_{n\in \omega}$ of $X$
such that $f_{\vert {A_n}}$ is continuous for all $n$. This is an effective version of a
recent result by Pawlikowski and Sabok, generalizing an earlier result of Solecki.
Keywords:
prove vardelta function varsigma domain sigma continuous vardelta covering omega vert continuous effective version recent result pawlikowski sabok generalizing earlier result solecki
Affiliations des auteurs :
Gabriel Debs  1
@article{10_4064_fm224_2_4,
author = {Gabriel Debs},
title = {Effective decomposition of $\sigma $-continuous {Borel} functions},
journal = {Fundamenta Mathematicae},
pages = {187--202},
year = {2014},
volume = {224},
number = {2},
doi = {10.4064/fm224-2-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm224-2-4/}
}
Gabriel Debs. Effective decomposition of $\sigma $-continuous Borel functions. Fundamenta Mathematicae, Tome 224 (2014) no. 2, pp. 187-202. doi: 10.4064/fm224-2-4
Cité par Sources :