Function spaces and local properties
Fundamenta Mathematicae, Tome 223 (2013) no. 3, pp. 207-223.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Necessary conditions and sufficient conditions are given for $C_p(X)$ to be a ($\sigma $-) $m_1$- or $m_3$-space. (A space is an $m_1$-space if each of its points has a closure-preserving local base.) A compact uncountable space $K$ is given with $C_{p}(K)$ an $m_1$-space, which answers questions raised by Dow, Ramírez Martínez and Tkachuk (2010) and Tkachuk (2011).
DOI : 10.4064/fm223-3-2
Keywords: necessary conditions sufficient conditions given sigma space space space each its points has closure preserving local base compact uncountable space given space which answers questions raised dow ram rez mart nez tkachuk tkachuk

Ziqin Feng 1 ; Paul Gartside 2

1 Department of Mathematics Auburn University Auburn, AL 36830, U.S.A.
2 Department of Mathematics University of Pittsburgh Pittsburgh, PA 15260, U.S.A.
@article{10_4064_fm223_3_2,
     author = {Ziqin Feng and Paul Gartside},
     title = {Function spaces and local properties},
     journal = {Fundamenta Mathematicae},
     pages = {207--223},
     publisher = {mathdoc},
     volume = {223},
     number = {3},
     year = {2013},
     doi = {10.4064/fm223-3-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm223-3-2/}
}
TY  - JOUR
AU  - Ziqin Feng
AU  - Paul Gartside
TI  - Function spaces and local properties
JO  - Fundamenta Mathematicae
PY  - 2013
SP  - 207
EP  - 223
VL  - 223
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm223-3-2/
DO  - 10.4064/fm223-3-2
LA  - en
ID  - 10_4064_fm223_3_2
ER  - 
%0 Journal Article
%A Ziqin Feng
%A Paul Gartside
%T Function spaces and local properties
%J Fundamenta Mathematicae
%D 2013
%P 207-223
%V 223
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm223-3-2/
%R 10.4064/fm223-3-2
%G en
%F 10_4064_fm223_3_2
Ziqin Feng; Paul Gartside. Function spaces and local properties. Fundamenta Mathematicae, Tome 223 (2013) no. 3, pp. 207-223. doi : 10.4064/fm223-3-2. http://geodesic.mathdoc.fr/articles/10.4064/fm223-3-2/

Cité par Sources :