Function spaces and local properties
Fundamenta Mathematicae, Tome 223 (2013) no. 3, pp. 207-223
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Necessary conditions and sufficient conditions are given for $C_p(X)$ to be a ($\sigma $-) $m_1$- or $m_3$-space. (A space is an $m_1$-space if each of its points has a closure-preserving local base.) A compact uncountable space $K$ is given with $C_{p}(K)$ an $m_1$-space, which answers questions raised by Dow, Ramírez Martínez and Tkachuk (2010) and Tkachuk (2011).
Keywords:
necessary conditions sufficient conditions given sigma space space space each its points has closure preserving local base compact uncountable space given space which answers questions raised dow ram rez mart nez tkachuk tkachuk
Affiliations des auteurs :
Ziqin Feng 1 ; Paul Gartside 2
@article{10_4064_fm223_3_2,
author = {Ziqin Feng and Paul Gartside},
title = {Function spaces and local properties},
journal = {Fundamenta Mathematicae},
pages = {207--223},
publisher = {mathdoc},
volume = {223},
number = {3},
year = {2013},
doi = {10.4064/fm223-3-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm223-3-2/}
}
Ziqin Feng; Paul Gartside. Function spaces and local properties. Fundamenta Mathematicae, Tome 223 (2013) no. 3, pp. 207-223. doi: 10.4064/fm223-3-2
Cité par Sources :