The tree property at the double successor of a measurable cardinal $\kappa $ with $2^{\kappa} $ large
Fundamenta Mathematicae, Tome 223 (2013) no. 1, pp. 55-64.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Assuming the existence of a $\lambda ^+$-hypermeasurable cardinal $\kappa $, where $\lambda $ is the first weakly compact cardinal above $\kappa $, we prove that, in some forcing extension, $\kappa $ is still measurable, $\kappa ^{++}$ has the tree property and $2^\kappa =\kappa ^{+++}$. If the assumption is strengthened to the existence of a $\theta $-hypermeasurable cardinal (for an arbitrary cardinal $\theta >\lambda $ of cofinality greater than $\kappa $) then the proof can be generalized to get $2^\kappa =\theta $.
DOI : 10.4064/fm223-1-4
Keywords: assuming existence lambda hypermeasurable cardinal nbsp kappa where lambda first weakly compact cardinal above kappa prove forcing extension kappa still measurable kappa has tree property kappa kappa assumption strengthened existence theta hypermeasurable cardinal arbitrary cardinal theta lambda cofinality greater kappa proof generalized get kappa theta

Sy-David Friedman 1 ; Ajdin Halilović 2

1 Kurt Gödel Research Center University of Vienna 1090 Wien, Austria
2 Faculty of Engineering Sciences Lumina–The University of South East Europe 021187 Bucureşti, Romania
@article{10_4064_fm223_1_4,
     author = {Sy-David Friedman and Ajdin Halilovi\'c},
     title = {The tree property at the double successor
 of a measurable cardinal $\kappa $ with $2^{\kappa} $ large},
     journal = {Fundamenta Mathematicae},
     pages = {55--64},
     publisher = {mathdoc},
     volume = {223},
     number = {1},
     year = {2013},
     doi = {10.4064/fm223-1-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm223-1-4/}
}
TY  - JOUR
AU  - Sy-David Friedman
AU  - Ajdin Halilović
TI  - The tree property at the double successor
 of a measurable cardinal $\kappa $ with $2^{\kappa} $ large
JO  - Fundamenta Mathematicae
PY  - 2013
SP  - 55
EP  - 64
VL  - 223
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm223-1-4/
DO  - 10.4064/fm223-1-4
LA  - en
ID  - 10_4064_fm223_1_4
ER  - 
%0 Journal Article
%A Sy-David Friedman
%A Ajdin Halilović
%T The tree property at the double successor
 of a measurable cardinal $\kappa $ with $2^{\kappa} $ large
%J Fundamenta Mathematicae
%D 2013
%P 55-64
%V 223
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm223-1-4/
%R 10.4064/fm223-1-4
%G en
%F 10_4064_fm223_1_4
Sy-David Friedman; Ajdin Halilović. The tree property at the double successor
 of a measurable cardinal $\kappa $ with $2^{\kappa} $ large. Fundamenta Mathematicae, Tome 223 (2013) no. 1, pp. 55-64. doi : 10.4064/fm223-1-4. http://geodesic.mathdoc.fr/articles/10.4064/fm223-1-4/

Cité par Sources :