Almost Abelian regular dessins d'enfants
Fundamenta Mathematicae, Tome 222 (2013) no. 3, pp. 269-278
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
A regular dessin d'enfant, in this paper, will be a pair $(S, \beta)$, where $S$ is a closed Riemann surface and $\beta:S \to \widehat{\mathbb C}$ is a regular branched cover whose branch values are contained in the set $\{\infty,0,1\}$. Let ${\rm Aut}(S,\beta)$ be the group of automorphisms of $(S,\beta)$, that is, the deck group of $\beta$.
If ${\rm Aut}(S,\beta)$ is Abelian, then it is known that $(S,\beta)$ can be defined over ${\mathbb Q}$.
We prove that, if $A$ is an Abelian group and ${\rm Aut}(S,\beta) \cong A \rtimes {\mathbb Z}_{2}$, then $(S,\beta)$ is also definable over ${\mathbb Q}$. Moreover, if $A \cong {\mathbb Z}_{n}$, then we provide explicitly these dessins over ${\mathbb Q}$.
Keywords:
regular dessin denfant paper pair beta where closed riemann surface beta widehat mathbb regular branched cover whose branch values contained set infty aut beta group automorphisms beta deck group beta aut beta abelian known beta defined nbsp mathbb prove abelian group aut beta cong rtimes mathbb beta definable mathbb moreover cong mathbb provide explicitly these dessins nbsp mathbb
Affiliations des auteurs :
Ruben A. Hidalgo 1
@article{10_4064_fm222_3_3,
author = {Ruben A. Hidalgo},
title = {Almost {Abelian} regular dessins d'enfants},
journal = {Fundamenta Mathematicae},
pages = {269--278},
publisher = {mathdoc},
volume = {222},
number = {3},
year = {2013},
doi = {10.4064/fm222-3-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm222-3-3/}
}
Ruben A. Hidalgo. Almost Abelian regular dessins d'enfants. Fundamenta Mathematicae, Tome 222 (2013) no. 3, pp. 269-278. doi: 10.4064/fm222-3-3
Cité par Sources :