Maps of toric varieties in Cox coordinates
Fundamenta Mathematicae, Tome 222 (2013) no. 3, pp. 213-267
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
The Cox ring provides a coordinate system on a toric variety analogous to the homogeneous coordinate ring of projective space. Rational maps between projective spaces are described using polynomials in the coordinate ring, and we generalise this to toric varieties, providing a unified description of arbitrary rational maps between toric varieties in terms of their Cox coordinates. Introducing formal roots of polynomials is necessary even in the simplest examples.
Keywords:
cox ring provides coordinate system toric variety analogous homogeneous coordinate ring projective space rational maps between projective spaces described using polynomials coordinate ring generalise toric varieties providing unified description arbitrary rational maps between toric varieties terms their cox coordinates introducing formal roots polynomials necessary even simplest examples
Affiliations des auteurs :
Gavin Brown 1 ; Jarosław Buczyński 2
@article{10_4064_fm222_3_2,
author = {Gavin Brown and Jaros{\l}aw Buczy\'nski},
title = {Maps of toric varieties in {Cox} coordinates},
journal = {Fundamenta Mathematicae},
pages = {213--267},
publisher = {mathdoc},
volume = {222},
number = {3},
year = {2013},
doi = {10.4064/fm222-3-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm222-3-2/}
}
TY - JOUR AU - Gavin Brown AU - Jarosław Buczyński TI - Maps of toric varieties in Cox coordinates JO - Fundamenta Mathematicae PY - 2013 SP - 213 EP - 267 VL - 222 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm222-3-2/ DO - 10.4064/fm222-3-2 LA - en ID - 10_4064_fm222_3_2 ER -
Gavin Brown; Jarosław Buczyński. Maps of toric varieties in Cox coordinates. Fundamenta Mathematicae, Tome 222 (2013) no. 3, pp. 213-267. doi: 10.4064/fm222-3-2
Cité par Sources :