On ultrapowers of Banach spaces of type $\mathscr{L}_{\infty} $
Fundamenta Mathematicae, Tome 222 (2013) no. 3, pp. 195-212.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove that no ultraproduct of Banach spaces via a countably incomplete ultrafilter can contain $c_0$ complemented. This shows that a “result” widely used in the theory of ultraproducts is wrong. We then amend a number of results whose proofs have been infected by that statement. In particular we provide proofs for the following statements: (i) All $M$-spaces, in particular all $C(K)$-spaces, have ultrapowers isomorphic to ultrapowers of $c_0$, as also do all their complemented subspaces isomorphic to their square. (ii) No ultrapower of the Gurariĭ space can be complemented in any $M$-space. (iii) There exist Banach spaces not complemented in any $C(K)$-space having ultrapowers isomorphic to a $C(K)$-space.
DOI : 10.4064/fm222-3-1
Mots-clés : prove ultraproduct banach spaces via countably incomplete ultrafilter contain complemented shows result widely theory ultraproducts wrong amend number results whose proofs have infected statement particular provide proofs following statements m spaces particular spaces have ultrapowers isomorphic ultrapowers their complemented subspaces isomorphic their square ultrapower gurari space complemented m space iii there exist banach spaces complemented space having ultrapowers isomorphic space

Antonio Avilés 1 ; Félix Cabello Sánchez 2 ; Jesús M. F. Castillo 2 ; Manuel González 3 ; Yolanda Moreno 4

1 Departamento de Matemáticas Universidad de Murcia 30100 Espinardo, Murcia, Spain
2 Departamento de Matemáticas Universidad de Extremadura Avenida de Elvas s/n 06071 Badajoz, Spain
3 Departamento de Matemáticas Universidad de Cantabria Avenida los Castros s/n 39071 Santander, Spain
4 Escuela Politécnica Universidad de Extremadura Avenida de la Universidad s/n 10071 Cáceres, Spain
@article{10_4064_fm222_3_1,
     author = {Antonio Avil\'es and F\'elix Cabello S\'anchez and Jes\'us M. F. Castillo and Manuel Gonz\'alez and Yolanda Moreno},
     title = {On ultrapowers of {Banach} spaces of type $\mathscr{L}_{\infty} $},
     journal = {Fundamenta Mathematicae},
     pages = {195--212},
     publisher = {mathdoc},
     volume = {222},
     number = {3},
     year = {2013},
     doi = {10.4064/fm222-3-1},
     language = {de},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm222-3-1/}
}
TY  - JOUR
AU  - Antonio Avilés
AU  - Félix Cabello Sánchez
AU  - Jesús M. F. Castillo
AU  - Manuel González
AU  - Yolanda Moreno
TI  - On ultrapowers of Banach spaces of type $\mathscr{L}_{\infty} $
JO  - Fundamenta Mathematicae
PY  - 2013
SP  - 195
EP  - 212
VL  - 222
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm222-3-1/
DO  - 10.4064/fm222-3-1
LA  - de
ID  - 10_4064_fm222_3_1
ER  - 
%0 Journal Article
%A Antonio Avilés
%A Félix Cabello Sánchez
%A Jesús M. F. Castillo
%A Manuel González
%A Yolanda Moreno
%T On ultrapowers of Banach spaces of type $\mathscr{L}_{\infty} $
%J Fundamenta Mathematicae
%D 2013
%P 195-212
%V 222
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm222-3-1/
%R 10.4064/fm222-3-1
%G de
%F 10_4064_fm222_3_1
Antonio Avilés; Félix Cabello Sánchez; Jesús M. F. Castillo; Manuel González; Yolanda Moreno. On ultrapowers of Banach spaces of type $\mathscr{L}_{\infty} $. Fundamenta Mathematicae, Tome 222 (2013) no. 3, pp. 195-212. doi : 10.4064/fm222-3-1. http://geodesic.mathdoc.fr/articles/10.4064/fm222-3-1/

Cité par Sources :