On ultrapowers of Banach spaces of type $\mathscr{L}_{\infty} $
Fundamenta Mathematicae, Tome 222 (2013) no. 3, pp. 195-212
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove that no ultraproduct of Banach spaces via a countably incomplete ultrafilter can contain $c_0$ complemented. This shows that a “result” widely used in the theory of ultraproducts is wrong. We then amend a number of results whose proofs have been infected by that statement. In particular we provide proofs for the following statements: (i) All $M$-spaces, in particular all $C(K)$-spaces, have ultrapowers isomorphic to ultrapowers of $c_0$, as also do all their complemented subspaces isomorphic to their square. (ii) No ultrapower of the Gurariĭ space can be complemented in any $M$-space. (iii) There exist Banach spaces not complemented in any $C(K)$-space having ultrapowers isomorphic to a $C(K)$-space.
Mots-clés :
prove ultraproduct banach spaces via countably incomplete ultrafilter contain complemented shows result widely theory ultraproducts wrong amend number results whose proofs have infected statement particular provide proofs following statements m spaces particular spaces have ultrapowers isomorphic ultrapowers their complemented subspaces isomorphic their square ultrapower gurari space complemented m space iii there exist banach spaces complemented space having ultrapowers isomorphic space
Affiliations des auteurs :
Antonio Avilés 1 ; Félix Cabello Sánchez 2 ; Jesús M. F. Castillo 2 ; Manuel González 3 ; Yolanda Moreno 4
@article{10_4064_fm222_3_1,
author = {Antonio Avil\'es and F\'elix Cabello S\'anchez and Jes\'us M. F. Castillo and Manuel Gonz\'alez and Yolanda Moreno},
title = {On ultrapowers of {Banach} spaces of type $\mathscr{L}_{\infty} $},
journal = {Fundamenta Mathematicae},
pages = {195--212},
publisher = {mathdoc},
volume = {222},
number = {3},
year = {2013},
doi = {10.4064/fm222-3-1},
language = {de},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm222-3-1/}
}
TY - JOUR
AU - Antonio Avilés
AU - Félix Cabello Sánchez
AU - Jesús M. F. Castillo
AU - Manuel González
AU - Yolanda Moreno
TI - On ultrapowers of Banach spaces of type $\mathscr{L}_{\infty} $
JO - Fundamenta Mathematicae
PY - 2013
SP - 195
EP - 212
VL - 222
IS - 3
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.4064/fm222-3-1/
DO - 10.4064/fm222-3-1
LA - de
ID - 10_4064_fm222_3_1
ER -
%0 Journal Article
%A Antonio Avilés
%A Félix Cabello Sánchez
%A Jesús M. F. Castillo
%A Manuel González
%A Yolanda Moreno
%T On ultrapowers of Banach spaces of type $\mathscr{L}_{\infty} $
%J Fundamenta Mathematicae
%D 2013
%P 195-212
%V 222
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm222-3-1/
%R 10.4064/fm222-3-1
%G de
%F 10_4064_fm222_3_1
Antonio Avilés; Félix Cabello Sánchez; Jesús M. F. Castillo; Manuel González; Yolanda Moreno. On ultrapowers of Banach spaces of type $\mathscr{L}_{\infty} $. Fundamenta Mathematicae, Tome 222 (2013) no. 3, pp. 195-212. doi: 10.4064/fm222-3-1
Cité par Sources :