Extension properties of Stone–Čech coronas and
proper absolute extensors
Fundamenta Mathematicae, Tome 222 (2013) no. 2, pp. 155-173
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We characterize, in terms of $X$, the extensional dimension of the Stone–Čech corona $\beta X \setminus X$ of a locally compact and Lindelöf space $X$. The non-Lindelöf case is also settled in terms of extending proper maps with values in $I^{\tau }\setminus L$, where $L$ is a finite complex. Further, for a finite complex $L$, an uncountable cardinal $\tau $ and a $Z_{\tau }$-set $X$ in the Tikhonov cube $I^{\tau }$ we find a necessary and sufficient condition, in terms of $I^{\tau }\setminus X$, for $X$ to be in the class $\operatorname {AE}([L])$. We also introduce a concept of a proper absolute extensor and characterize the product $[0,1)\times I^{\tau }$ as the only locally compact and Lindelöf proper absolute extensor of weight $\tau > \omega $ which has the same pseudocharacter at each point.
Keywords:
characterize terms extensional dimension stone ech corona beta setminus locally compact lindel space non lindel settled terms extending proper maps values tau setminus where finite complex further finite complex uncountable cardinal tau tau set tikhonov cube tau necessary sufficient condition terms tau setminus class operatorname introduce concept proper absolute extensor characterize product times tau only locally compact lindel proper absolute extensor weight tau omega which has pseudocharacter each point
Affiliations des auteurs :
A. Chigogidze 1
@article{10_4064_fm222_2_3,
author = {A. Chigogidze},
title = {Extension properties of {Stone{\textendash}\v{C}ech} coronas and
proper absolute extensors},
journal = {Fundamenta Mathematicae},
pages = {155--173},
publisher = {mathdoc},
volume = {222},
number = {2},
year = {2013},
doi = {10.4064/fm222-2-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm222-2-3/}
}
TY - JOUR AU - A. Chigogidze TI - Extension properties of Stone–Čech coronas and proper absolute extensors JO - Fundamenta Mathematicae PY - 2013 SP - 155 EP - 173 VL - 222 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm222-2-3/ DO - 10.4064/fm222-2-3 LA - en ID - 10_4064_fm222_2_3 ER -
A. Chigogidze. Extension properties of Stone–Čech coronas and proper absolute extensors. Fundamenta Mathematicae, Tome 222 (2013) no. 2, pp. 155-173. doi: 10.4064/fm222-2-3
Cité par Sources :