Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Saharon Shelah 1 ; Juris Steprāns 2
@article{10_4064_fm222_2_2016, author = {Saharon Shelah and Juris Stepr\={a}ns}, title = {When automorphisms of $\mathcal P(\kappa )/[\kappa ]^{<\aleph _0}$ are trivial off a small set}, journal = {Fundamenta Mathematicae}, pages = {167--181}, publisher = {mathdoc}, volume = {235}, number = {2}, year = {2016}, doi = {10.4064/fm222-2-2016}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4064/fm222-2-2016/} }
TY - JOUR AU - Saharon Shelah AU - Juris Steprāns TI - When automorphisms of $\mathcal P(\kappa )/[\kappa ]^{<\aleph _0}$ are trivial off a small set JO - Fundamenta Mathematicae PY - 2016 SP - 167 EP - 181 VL - 235 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm222-2-2016/ DO - 10.4064/fm222-2-2016 LA - en ID - 10_4064_fm222_2_2016 ER -
%0 Journal Article %A Saharon Shelah %A Juris Steprāns %T When automorphisms of $\mathcal P(\kappa )/[\kappa ]^{<\aleph _0}$ are trivial off a small set %J Fundamenta Mathematicae %D 2016 %P 167-181 %V 235 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/fm222-2-2016/ %R 10.4064/fm222-2-2016 %G en %F 10_4064_fm222_2_2016
Saharon Shelah; Juris Steprāns. When automorphisms of $\mathcal P(\kappa )/[\kappa ]^{<\aleph _0}$ are trivial off a small set. Fundamenta Mathematicae, Tome 235 (2016) no. 2, pp. 167-181. doi : 10.4064/fm222-2-2016. http://geodesic.mathdoc.fr/articles/10.4064/fm222-2-2016/
Cité par Sources :