Weak square sequences and special Aronszajn trees
Fundamenta Mathematicae, Tome 221 (2013) no. 3, pp. 267-284.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

A classical theorem of set theory is the equivalence of the weak square principle $\Box _\mu ^*$ with the existence of a special Aronszajn tree on $\mu ^+$. We introduce the notion of a weak square sequence on any regular uncountable cardinal, and prove that the equivalence between weak square sequences and special Aronszajn trees holds in general.
DOI : 10.4064/fm221-3-4
Keywords: classical theorem set theory equivalence weak square principle box * existence special aronszajn tree introduce notion weak square sequence regular uncountable cardinal prove equivalence between weak square sequences special aronszajn trees holds general

John Krueger 1

1 Department of Mathematics University of North Texas 1155 Union Circle #311430 Denton, TX 76203, U.S.A.
@article{10_4064_fm221_3_4,
     author = {John Krueger},
     title = {Weak square sequences and special {Aronszajn} trees},
     journal = {Fundamenta Mathematicae},
     pages = {267--284},
     publisher = {mathdoc},
     volume = {221},
     number = {3},
     year = {2013},
     doi = {10.4064/fm221-3-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm221-3-4/}
}
TY  - JOUR
AU  - John Krueger
TI  - Weak square sequences and special Aronszajn trees
JO  - Fundamenta Mathematicae
PY  - 2013
SP  - 267
EP  - 284
VL  - 221
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm221-3-4/
DO  - 10.4064/fm221-3-4
LA  - en
ID  - 10_4064_fm221_3_4
ER  - 
%0 Journal Article
%A John Krueger
%T Weak square sequences and special Aronszajn trees
%J Fundamenta Mathematicae
%D 2013
%P 267-284
%V 221
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm221-3-4/
%R 10.4064/fm221-3-4
%G en
%F 10_4064_fm221_3_4
John Krueger. Weak square sequences and special Aronszajn trees. Fundamenta Mathematicae, Tome 221 (2013) no. 3, pp. 267-284. doi : 10.4064/fm221-3-4. http://geodesic.mathdoc.fr/articles/10.4064/fm221-3-4/

Cité par Sources :