Weak square sequences and special Aronszajn trees
Fundamenta Mathematicae, Tome 221 (2013) no. 3, pp. 267-284
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
A classical theorem of set theory is the equivalence of the weak square principle $\Box _\mu ^*$ with the existence of a special Aronszajn tree on $\mu ^+$. We introduce the notion of a weak square sequence on any regular uncountable cardinal, and prove that the equivalence between weak square sequences and special Aronszajn trees holds in general.
Keywords:
classical theorem set theory equivalence weak square principle box * existence special aronszajn tree introduce notion weak square sequence regular uncountable cardinal prove equivalence between weak square sequences special aronszajn trees holds general
Affiliations des auteurs :
John Krueger 1
@article{10_4064_fm221_3_4,
author = {John Krueger},
title = {Weak square sequences and special {Aronszajn} trees},
journal = {Fundamenta Mathematicae},
pages = {267--284},
publisher = {mathdoc},
volume = {221},
number = {3},
year = {2013},
doi = {10.4064/fm221-3-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm221-3-4/}
}
John Krueger. Weak square sequences and special Aronszajn trees. Fundamenta Mathematicae, Tome 221 (2013) no. 3, pp. 267-284. doi: 10.4064/fm221-3-4
Cité par Sources :