Gibbs states for non-irreducible countable Markov shifts
Fundamenta Mathematicae, Tome 221 (2013) no. 3, pp. 231-265
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We study Markov shifts over countable (finite or countably infinite) alphabets, i.e. shifts generated by incidence matrices. In particular, we derive necessary and sufficient conditions for the existence of a Gibbs state for a certain class of infinite Markov shifts. We further establish a characterization of the existence, uniqueness and ergodicity of invariant Gibbs states for this class of shifts. Our results generalize the well-known results for finitely irreducible Markov shifts.
Keywords:
study markov shifts countable finite countably infinite alphabets shifts generated incidence matrices particular derive necessary sufficient conditions existence gibbs state certain class infinite markov shifts further establish characterization existence uniqueness ergodicity invariant gibbs states class shifts results generalize well known results finitely irreducible markov shifts
Affiliations des auteurs :
Andrei E. Ghenciu 1 ; Mario Roy 2
@article{10_4064_fm221_3_3,
author = {Andrei E. Ghenciu and Mario Roy},
title = {Gibbs states for non-irreducible countable {Markov} shifts},
journal = {Fundamenta Mathematicae},
pages = {231--265},
publisher = {mathdoc},
volume = {221},
number = {3},
year = {2013},
doi = {10.4064/fm221-3-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm221-3-3/}
}
TY - JOUR AU - Andrei E. Ghenciu AU - Mario Roy TI - Gibbs states for non-irreducible countable Markov shifts JO - Fundamenta Mathematicae PY - 2013 SP - 231 EP - 265 VL - 221 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm221-3-3/ DO - 10.4064/fm221-3-3 LA - en ID - 10_4064_fm221_3_3 ER -
Andrei E. Ghenciu; Mario Roy. Gibbs states for non-irreducible countable Markov shifts. Fundamenta Mathematicae, Tome 221 (2013) no. 3, pp. 231-265. doi: 10.4064/fm221-3-3
Cité par Sources :