On $d$-finite tuples in random variable structures
Fundamenta Mathematicae, Tome 221 (2013) no. 3, pp. 221-230
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove that the $d$-finite tuples in models of $\mathsf {ARV}$ are precisely the discrete random variables. Then, we apply $d$-finite tuples to the work by Keisler, Hoover, Fajardo, and Sun concerning saturated probability spaces. In particular, we strengthen a result in Keisler and Sun's recent paper.
Mots-clés :
prove d finite tuples models mathsf arv precisely discrete random variables apply d finite tuples work keisler hoover fajardo sun concerning saturated probability spaces particular strengthen result keisler suns recent paper
Affiliations des auteurs :
Shichang Song 1
@article{10_4064_fm221_3_2,
author = {Shichang Song},
title = {On $d$-finite tuples in random variable structures},
journal = {Fundamenta Mathematicae},
pages = {221--230},
publisher = {mathdoc},
volume = {221},
number = {3},
year = {2013},
doi = {10.4064/fm221-3-2},
language = {fr},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm221-3-2/}
}
Shichang Song. On $d$-finite tuples in random variable structures. Fundamenta Mathematicae, Tome 221 (2013) no. 3, pp. 221-230. doi: 10.4064/fm221-3-2
Cité par Sources :