Computable categoricity
versus relative computable categoricity
Fundamenta Mathematicae, Tome 221 (2013) no. 2, pp. 129-159
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We study the notion of computable categoricity of computable structures, comparing it especially to the notion of relative computable categoricity and its relativizations. We show that every 1 decidable computably categorical structure is relatively $\Delta ^0_2$ categorical. We study the complexity of various index sets associated with computable categoricity and relative computable categoricity. We also introduce and study a variation of relative computable categoricity, comparing it to both computable categoricity and relative computable categoricity and its relativizations.
Keywords:
study notion computable categoricity computable structures comparing especially notion relative computable categoricity its relativizations every nbsp decidable computably categorical structure relatively delta nbsp categorical study complexity various index sets associated computable categoricity relative computable categoricity introduce study variation relative computable categoricity comparing computable categoricity relative computable categoricity its relativizations
Affiliations des auteurs :
Rodney G. Downey 1 ; Asher M. Kach 2 ; Steffen Lempp 3 ; Daniel D. Turetsky 4
@article{10_4064_fm221_2_2,
author = {Rodney G. Downey and Asher M. Kach and Steffen Lempp and Daniel D. Turetsky},
title = {Computable categoricity
versus relative computable categoricity},
journal = {Fundamenta Mathematicae},
pages = {129--159},
publisher = {mathdoc},
volume = {221},
number = {2},
year = {2013},
doi = {10.4064/fm221-2-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm221-2-2/}
}
TY - JOUR AU - Rodney G. Downey AU - Asher M. Kach AU - Steffen Lempp AU - Daniel D. Turetsky TI - Computable categoricity versus relative computable categoricity JO - Fundamenta Mathematicae PY - 2013 SP - 129 EP - 159 VL - 221 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm221-2-2/ DO - 10.4064/fm221-2-2 LA - en ID - 10_4064_fm221_2_2 ER -
%0 Journal Article %A Rodney G. Downey %A Asher M. Kach %A Steffen Lempp %A Daniel D. Turetsky %T Computable categoricity versus relative computable categoricity %J Fundamenta Mathematicae %D 2013 %P 129-159 %V 221 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/fm221-2-2/ %R 10.4064/fm221-2-2 %G en %F 10_4064_fm221_2_2
Rodney G. Downey; Asher M. Kach; Steffen Lempp; Daniel D. Turetsky. Computable categoricity versus relative computable categoricity. Fundamenta Mathematicae, Tome 221 (2013) no. 2, pp. 129-159. doi: 10.4064/fm221-2-2
Cité par Sources :