Higher order spreading models
Fundamenta Mathematicae, Tome 221 (2013) no. 1, pp. 23-68
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We introduce higher order spreading models associated to a Banach space $X$. Their definition is based on $\mathcal {F}$-sequences $(x_s)_{s\in \mathcal {F}}$ with $\mathcal {F}$ a regular thin family and on plegma families. We show that the higher order spreading models of a Banach space $X$ form an increasing transfinite hierarchy $(\mathcal {SM}_\xi (X))_{\xi \omega _1}$. Each $\mathcal {SM}_\xi (X)$ contains all spreading models generated by $\mathcal {F}$-sequences $(x_s)_{s\in \mathcal {F}}$ with order of $\mathcal {F}$ equal to $\xi $. We also study the fundamental properties of this hierarchy.
Keywords:
introduce higher order spreading models associated banach space nbsp their definition based mathcal sequences mathcal mathcal regular thin family plegma families higher order spreading models banach space form increasing transfinite hierarchy mathcal omega each mathcal contains spreading models generated mathcal sequences mathcal order mathcal equal study fundamental properties hierarchy
Affiliations des auteurs :
S. A. Argyros 1 ; V. Kanellopoulos 1 ; K. Tyros 2
@article{10_4064_fm221_1_2,
author = {S. A. Argyros and V. Kanellopoulos and K. Tyros},
title = {Higher order spreading models},
journal = {Fundamenta Mathematicae},
pages = {23--68},
publisher = {mathdoc},
volume = {221},
number = {1},
year = {2013},
doi = {10.4064/fm221-1-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm221-1-2/}
}
TY - JOUR AU - S. A. Argyros AU - V. Kanellopoulos AU - K. Tyros TI - Higher order spreading models JO - Fundamenta Mathematicae PY - 2013 SP - 23 EP - 68 VL - 221 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm221-1-2/ DO - 10.4064/fm221-1-2 LA - en ID - 10_4064_fm221_1_2 ER -
S. A. Argyros; V. Kanellopoulos; K. Tyros. Higher order spreading models. Fundamenta Mathematicae, Tome 221 (2013) no. 1, pp. 23-68. doi: 10.4064/fm221-1-2
Cité par Sources :