A dimensional property of Cartesian product
Fundamenta Mathematicae, Tome 220 (2013) no. 3, pp. 281-286
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We show that the Cartesian product of three hereditarily infinite-dimensional compact metric spaces is never hereditarily infinite-dimensional. It is quite surprising that the proof of this fact (and this is the only proof known to the author) essentially relies on algebraic topology.
Keywords:
cartesian product three hereditarily infinite dimensional compact metric spaces never hereditarily infinite dimensional quite surprising proof only proof known author essentially relies algebraic topology
Affiliations des auteurs :
Michael Levin 1
@article{10_4064_fm220_3_7,
author = {Michael Levin},
title = {A dimensional property of {Cartesian} product},
journal = {Fundamenta Mathematicae},
pages = {281--286},
publisher = {mathdoc},
volume = {220},
number = {3},
year = {2013},
doi = {10.4064/fm220-3-7},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm220-3-7/}
}
Michael Levin. A dimensional property of Cartesian product. Fundamenta Mathematicae, Tome 220 (2013) no. 3, pp. 281-286. doi: 10.4064/fm220-3-7
Cité par Sources :