A dimensional property of Cartesian product
Fundamenta Mathematicae, Tome 220 (2013) no. 3, pp. 281-286.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We show that the Cartesian product of three hereditarily infinite-dimensional compact metric spaces is never hereditarily infinite-dimensional. It is quite surprising that the proof of this fact (and this is the only proof known to the author) essentially relies on algebraic topology.
DOI : 10.4064/fm220-3-7
Keywords: cartesian product three hereditarily infinite dimensional compact metric spaces never hereditarily infinite dimensional quite surprising proof only proof known author essentially relies algebraic topology

Michael Levin 1

1 Department of Mathematics Ben Gurion University of the Negev P.O.B. 653 Be'er Sheva 84105, Israel
@article{10_4064_fm220_3_7,
     author = {Michael Levin},
     title = {A dimensional property of {Cartesian} product},
     journal = {Fundamenta Mathematicae},
     pages = {281--286},
     publisher = {mathdoc},
     volume = {220},
     number = {3},
     year = {2013},
     doi = {10.4064/fm220-3-7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm220-3-7/}
}
TY  - JOUR
AU  - Michael Levin
TI  - A dimensional property of Cartesian product
JO  - Fundamenta Mathematicae
PY  - 2013
SP  - 281
EP  - 286
VL  - 220
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm220-3-7/
DO  - 10.4064/fm220-3-7
LA  - en
ID  - 10_4064_fm220_3_7
ER  - 
%0 Journal Article
%A Michael Levin
%T A dimensional property of Cartesian product
%J Fundamenta Mathematicae
%D 2013
%P 281-286
%V 220
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm220-3-7/
%R 10.4064/fm220-3-7
%G en
%F 10_4064_fm220_3_7
Michael Levin. A dimensional property of Cartesian product. Fundamenta Mathematicae, Tome 220 (2013) no. 3, pp. 281-286. doi : 10.4064/fm220-3-7. http://geodesic.mathdoc.fr/articles/10.4064/fm220-3-7/

Cité par Sources :