Longer chains of idempotents in $\beta G$
Fundamenta Mathematicae, Tome 220 (2013) no. 3, pp. 243-261.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Given idempotents $e$ and $f$ in a semigroup, $e \leq f$ if and only if $e = f e = e f$. We show that if $G$ is a countable discrete group, $p$ is a right cancelable element of $G^*=\beta G\setminus G$, and $\lambda $ is a countable ordinal, then there is a strictly decreasing chain $\langle q_\sigma \rangle _{\sigma \lambda }$ of idempotents in $C_p$, the smallest compact subsemigroup of $G^*$ with $p$ as a member. We also show that if $S$ is any infinite subsemigroup of a countable group, then any nonminimal idempotent in $S^*$ is the largest element of such a strictly decreasing chain of idempotents. (It had been an open question whether there was a strictly decreasing chain $\langle q_\sigma \rangle _{\sigma \omega +1}$ in ${\mathbb N}^*$.) As other corollaries we show that if $S$ is an infinite right cancellative and weakly left cancellative discrete semigroup, then $\beta S$ contains a decreasing chain of idempotents of reverse order type $\lambda $ for every countable ordinal $\lambda $ and that if $S$ is an infinite cancellative semigroup then the set $U(S)$ of uniform ultrafilters contains such decreasing chains.
DOI : 10.4064/fm220-3-5
Keywords: given idempotents semigroup leq only countable discrete group right cancelable element * beta setminus lambda countable ordinal there strictly decreasing chain langle sigma rangle sigma lambda idempotents smallest compact subsemigroup * member infinite subsemigroup countable group nonminimal idempotent * largest element strictly decreasing chain idempotents had question whether there strictly decreasing chain langle sigma rangle sigma omega mathbb * other corollaries infinite right cancellative weakly cancellative discrete semigroup beta contains decreasing chain idempotents reverse order type lambda every countable ordinal lambda infinite cancellative semigroup set uniform ultrafilters contains decreasing chains

Neil Hindman 1 ; Dona Strauss 2 ; Yevhen Zelenyuk 3

1 Department of Mathematics Howard University Washington, DC 20059, U.S.A.
2 Department of Pure Mathematics University of Leeds Leeds LS2 9J2, UK
3 School of Mathematics University of the Witwatersrand Private Bag 3 Wits 2050, South Africa
@article{10_4064_fm220_3_5,
     author = {Neil Hindman and Dona Strauss and Yevhen Zelenyuk},
     title = {Longer chains of idempotents in $\beta G$},
     journal = {Fundamenta Mathematicae},
     pages = {243--261},
     publisher = {mathdoc},
     volume = {220},
     number = {3},
     year = {2013},
     doi = {10.4064/fm220-3-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm220-3-5/}
}
TY  - JOUR
AU  - Neil Hindman
AU  - Dona Strauss
AU  - Yevhen Zelenyuk
TI  - Longer chains of idempotents in $\beta G$
JO  - Fundamenta Mathematicae
PY  - 2013
SP  - 243
EP  - 261
VL  - 220
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm220-3-5/
DO  - 10.4064/fm220-3-5
LA  - en
ID  - 10_4064_fm220_3_5
ER  - 
%0 Journal Article
%A Neil Hindman
%A Dona Strauss
%A Yevhen Zelenyuk
%T Longer chains of idempotents in $\beta G$
%J Fundamenta Mathematicae
%D 2013
%P 243-261
%V 220
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm220-3-5/
%R 10.4064/fm220-3-5
%G en
%F 10_4064_fm220_3_5
Neil Hindman; Dona Strauss; Yevhen Zelenyuk. Longer chains of idempotents in $\beta G$. Fundamenta Mathematicae, Tome 220 (2013) no. 3, pp. 243-261. doi : 10.4064/fm220-3-5. http://geodesic.mathdoc.fr/articles/10.4064/fm220-3-5/

Cité par Sources :